Skip to main content

Advertisement

Log in

The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

In this review, we summarize current knowledge of the biological functions of the atypical BH3-only proteins BNIP3 and BNIP3L, focusing on the role of these proteins in cancer. Hypoxia increases the expression of BNIP3 through the transcription factor HIF-1, but despite a considerable number of investigations, it has proven difficult to establish a clear role for BNIP3 in the cellular hypoxic response. BNIP3 can induce a form of cell death that shows features of both necrosis and apoptosis, but unusually for a BH3-only protein, death occurs independently of the BH3 domain and is critically dependent on a C-terminal transmembrane domain, which also localizes the protein to the mitochondria. BNIP3 expression does not always result in cell death, suggesting that additional factors may suppress BNIP3 or cooperate with it to induce death. BNIP3 is highly expressed in some tumors, including those of the breast, lung and cervix. However, in colorectal and pancreatic cancers BNIP3 is frequently epigenetically silenced, possibly reflecting different functions for BNIP3 in different tissues. Recent reports have shown that BNIP3 can induce autophagy and there is some evidence to suggest this may represent an emerging role for BH3-only proteins in general. However, the mechanism through which BNIP3 induces autophagy and the cellular consequences of this are yet to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Labi, V., Erlacher, M., Kiessling, S., & Villunger, A. (2006). BH3-only proteins in cell death initiation, malignant disease and anticancer therapy. Cell Death and Differentiation, 13, 1325–338.

    Article  PubMed  CAS  Google Scholar 

  2. Strasser, A. (2005). The role of BH3-only proteins in the immune system. Nature Reviews Immunology, 5, 189–00.

    Article  PubMed  CAS  Google Scholar 

  3. Willis, S. N., & Adams, J. M. (2005). Life in the balance: How BH3-only proteins induce apoptosis. Current Opinion in Cell Biology, 17, 617–25.

    Article  PubMed  CAS  Google Scholar 

  4. Maiuri, M. C., Le Toumelin, G., Criollo, A., Rain, J. C., Gautier, F., Juin, P., et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO Journal, 26, 2527–539.

    Article  PubMed  CAS  Google Scholar 

  5. Willis, S. N., Fletcher, J. I., Kaufmann, T., van Delft, M. F., Chen, L., Czabotar, P. E., et al. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 315, 856–59.

    Article  PubMed  CAS  Google Scholar 

  6. Boyd, J. M., Malstrom, S., Subramanian, T., Venkatesh, L. K., Schaeper, U., Elangovan, B., et al. (1994). Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell, 79, 341–51.

    Article  PubMed  CAS  Google Scholar 

  7. Matsushima, M., Fujiwara, T., Takahashi, E., Minaguchi, T., Eguchi, Y., Tsujimoto, Y., et al. (1998). Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human NIP3. Genes, Chromosomes and Cancer, 21, 230–35.

    Article  CAS  Google Scholar 

  8. Yasuda, M., Han, J. W., Dionne, C. A., Boyd, J. M., & Chinnadurai, G. (1999). BNIP3alpha: A human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Research, 59, 533–37.

    PubMed  CAS  Google Scholar 

  9. Chen, G., Cizeau, J., Vande Velde, C., Park, J. H., Bozek, G., Bolton, J., et al. (1999). Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. Journal of Biological Chemistry, 274, 7–0.

    Article  PubMed  CAS  Google Scholar 

  10. Ohi, N., Tokunaga, A., Tsunoda, H., Nakano, K., Haraguchi, K., Oda, K., et al. (1999). A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death and Differentiation, 6, 314–25.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, G., Ray, R., Dubik, D., Shi, L., Cizeau, J., Bleackley, R. C., et al. (1997). The E1B 19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. Journal of Experimental Medicine, 186, 1975–983.

    Article  PubMed  CAS  Google Scholar 

  12. Yasuda, M., Theodorakis, P., Subramanian, T., & Chinnadurai, G. (1998). Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. Journal of Biological Chemistry, 273, 12415–2421.

    Article  PubMed  CAS  Google Scholar 

  13. Ray, R., Chen, G., Vande Velde, C., Cizeau, J., Park, J. H., Reed, J. C., et al. (2000). BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites. Journal of Biological Chemistry, 275, 1439–448.

    Article  PubMed  CAS  Google Scholar 

  14. Imazu, T., Shimizu, S., Tagami, S., Matsushima, M., Nakamura, Y., Miki, T., et al. (1999). Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene, 18, 4523–529.

    Article  PubMed  CAS  Google Scholar 

  15. Yussman, M. G., Toyokawa, T., Odley, A., Lynch, R. A., Wu, G., Colbert, M. C., et al. (2002). Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nature Medicine, 8, 725–30.

    PubMed  CAS  Google Scholar 

  16. Burton, T. R., Henson, E. S., Baijal, P., Eisenstat, D. D., & Gibson, S. B. (2006). The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survival under hypoxia. International Journal of Cancer, 118, 1660–669.

    Article  CAS  Google Scholar 

  17. Sulistijo, E. S., Jaszewski, T. M., & MacKenzie, K. R. (2003). Sequence-specific dimerization of the transmembrane domain of the “BH3-only–protein BNIP3 in membranes and detergent. Journal of Biological Chemistry, 278, 51950–1956.

    Article  PubMed  CAS  Google Scholar 

  18. Sulistijo, E. S., & MacKenzie, K. R. (2006). Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix’helix interactions. Journal of Molecular Biology, 364, 974–90.

    Article  PubMed  CAS  Google Scholar 

  19. Russ, W. P., & Engelman, D. M. (2000). The GxxxG motif: A framework for transmembrane helix’helix association. Journal of Molecular Biology, 296, 911–19.

    Article  PubMed  CAS  Google Scholar 

  20. Bocharov, E. V., Pustovalova, Y. E., Pavlov, K. V., Volynsky, P. E., Goncharuk, M. V., Ermolyuk, Y. S., et al. (2007). Unique Dimeric Structure of BNip3 Transmembrane Domain Suggests Membrane Permeabilization as a Cell Death Trigger. Journal of Biological Chemistry, 282, 16256–6266.

    Article  PubMed  CAS  Google Scholar 

  21. Frazier, D. P., Wilson, A., Graham, R. M., Thompson, J. W., Bishopric, N. H., & Webster, K. A. (2006). Acidosis regulates the stability, hydrophobicity, and activity of the BH3-only protein Bnip3. Antioxidants Redox Signalling, 8, 1625–634.

    Article  CAS  Google Scholar 

  22. Kim, J. Y., Cho, J. J., Ha, J., & Park, J. H. (2002). The carboxy terminal C-tail of BNip3 is crucial in induction of mitochondrial permeability transition in isolated mitochondria. Archives of Biochemistry and Biophysics, 398, 147–52.

    Article  PubMed  CAS  Google Scholar 

  23. Hamacher-Brady, A., Brady, N. R., Logue, S. E., Sayen, M. R., Jinno, M., Kirshenbaum, L. A., et al. (2006). Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death and Differentiation, 14, 146–57.

    Article  PubMed  CAS  Google Scholar 

  24. Kothari, S., Cizeau, J., McMillan-Ward, E., Israels, S. J., Bailes, M., Ens, K., et al. (2003). BNIP3 plays a role in hypoxic cell death in human epithelial cells that is inhibited by growth factors EGF and IGF. Oncogene, 22, 4734–744.

    Article  PubMed  CAS  Google Scholar 

  25. Lamy, L., Ticchioni, M., Rouquette-Jazdanian, A. K., Samson, M., Deckert, M., Greenberg, A. H., et al. (2003). CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis. Journal of Biological Chemistry, 278, 23915–3921.

    Article  PubMed  CAS  Google Scholar 

  26. Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews Cancer, 2, 38–7.

    Article  PubMed  CAS  Google Scholar 

  27. Greijer, A. E., van der Groep, P., Kemming, D., Shvarts, A., Semenza, G. L., Meijer, G. A., et al. (2005). Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). Journal of Pathology, 206, 291–04.

    Article  PubMed  CAS  Google Scholar 

  28. Bruick, R. K. (2000). Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proceedings of the National Academy of Sciences U S A, 97, 9082–087.

    Article  CAS  Google Scholar 

  29. Guo, K., Searfoss, G., Krolikowski, D., Pagnoni, M., Franks, C., Clark, K., et al. (2001). Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death and Differentiation, 8, 367–76.

    Article  PubMed  CAS  Google Scholar 

  30. Sowter, H. M., Ratcliffe, P. J., Watson, P., Greenberg, A. H., & Harris, A. L. (2001). HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Research, 61, 6669–673.

    PubMed  CAS  Google Scholar 

  31. Kim, J. Y., Ahn, H. J., Ryu, J. H., Suk, K., & Park, J. H. (2004). BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. Journal of Experimental Medicine, 199, 113–24.

    Article  PubMed  CAS  Google Scholar 

  32. Erler, J. T., Cawthorne, C. J., Williams, K. J., Koritzinsky, M., Wouters, B. G., Wilson, C., et al. (2004). Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Molecular and Cellular Biology, 24, 2875–889.

    Article  PubMed  CAS  Google Scholar 

  33. Raval, R. R., Lau, K. W., Tran, M. G. B., Sowter, H. M., Mandriota, S. J., Li, J. L., et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel’Lindau-associated renal cell carcinoma. Molecular and Cellular Biology, 25, 5675–686.

    Article  PubMed  CAS  Google Scholar 

  34. Mizutani, A., Furukawa, T., Adachi, Y., Ikehara, S., & Taketani, S. (2002). A zinc-finger protein, PLAGL2, induces the expression of a proapoptotic protein Nip3, leading to cellular apoptosis. Journal of Biological Chemistry, 277, 15851–5858.

    Article  PubMed  CAS  Google Scholar 

  35. Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., et al. (2000). BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Molecular and Cellular Biology, 20, 5454–468.

    Article  Google Scholar 

  36. Kubasiak, L. A., Hernandez, O. M., Bishopric, N. H., & Webster, K. A. (2002). Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proceedings of the National Academy of Sciences U S A, 99, 12825–2830.

    Article  CAS  Google Scholar 

  37. Kubli, D. A., Ycaza, J. E., & Gustafsson, A. B. (2007). Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak. Biochemical Journal.

  38. Manka, D., Spicer, Z., & Millhorn, D. E. (2005). Bcl-2/adenovirus E1B 19 kDa interacting protein-3 knockdown enables growth of breast cancer metastases in the lung, liver, and bone. Cancer Research, 65, 11689–1693.

    Article  PubMed  CAS  Google Scholar 

  39. Papandreou, I., Krishna, C., Kaper, F., Cai, D., Giaccia, A. J., & Denko, N. C. (2005). Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Research, 65, 3171–178.

    PubMed  CAS  Google Scholar 

  40. Diwan, A., Koesters, A. G., Odley, A. M., Pushkaran, S., Baines, C. P., Spike, B. et al. (2007). Unrestrained erythroblast development in Nix−−mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proceedings of the National Academy of Sciences U S A, 104, 6794–799.

    Article  CAS  Google Scholar 

  41. Fei, P., Wang, W., Kim, S. H., Wang, S., Burns, T. F., Sax, J. K., et al. (2004). Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell, 6, 597–09.

    Article  PubMed  CAS  Google Scholar 

  42. Bandyopadhyay, S., Zhan, R., Wang, Y., Pai, S. K., Hirota, S., Hosobe, S., et al. (2006). Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Research, 66, 5934–940.

    Article  PubMed  CAS  Google Scholar 

  43. Unoki, M., & Nakamura, Y. (2003). EGR2 induces apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK. Oncogene, 22, 2172–185.

    Article  PubMed  CAS  Google Scholar 

  44. Meijer, A. J., & Codogno, P. (2004). Regulation and role of autophagy in mammalian cells. International Journal of Biochemistry and Cellular Biology, 36, 2445–462.

    Article  CAS  Google Scholar 

  45. Debnath, J., Baehrecke, E. H., & Kroemer, G. (2005). Does autophagy contribute to cell death? Autophagy, 1, 66–4.

    PubMed  CAS  Google Scholar 

  46. Kroemer, G., & Jaattela, M. (2005). Lysosomes and autophagy in cell death control. Nature Reviews Cancer, 5, 886–97.

    Article  PubMed  CAS  Google Scholar 

  47. Hait, W. N., Jin, S., & Yang, J. M. (2006). A matter of life or death (or both): Understanding autophagy in cancer. Clinical Cancer Research, 12, 1961–965.

    Article  PubMed  CAS  Google Scholar 

  48. Hippert, M. M., O’Toole P. S., & Thorburn, A. (2006). Autophagy in cancer: Good, bad, or both? Cancer Research, 66, 9349–351.

    Article  PubMed  CAS  Google Scholar 

  49. Kondo, Y., Kanzawa, T., Sawaya, R., & Kondo, S. (2005). The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer, 5, 726–34.

    Article  PubMed  CAS  Google Scholar 

  50. Daido, S., Kanzawa, T., Yamamoto, A., Takeuchi, H., Kondo, Y., & Kondo, S. (2004). Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Research, 64, 4286–293.

    Article  PubMed  CAS  Google Scholar 

  51. Kanzawa, T., Zhang, L., Xiao, L., Germano, I. M., Kondo, Y., & Kondo, S. (2005). Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene, 24, 980–91.

    Article  PubMed  CAS  Google Scholar 

  52. Hamacher-Brady, A., Brady, N. R., Gottlieb, R. A., & Gustafsson, A. B. (2006). Autophagy as a protective response to Bnip3-mediated apoptotic signalling in the heart. Autophagy, 2, 307–09.

    PubMed  CAS  Google Scholar 

  53. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., et al. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122, 927–39.

    Article  PubMed  CAS  Google Scholar 

  54. Sowter, H. M., Ferguson, M., Pym, C., Watson, P., Fox, S. B., Han, C.,et al. (2003). Expression of the cell death genes BNip3 and NIX in ductal carcinoma in situ of the breast; correlation of BNip3 levels with necrosis and grade. Journal of Pathology, 201, 573–80.

    Article  PubMed  CAS  Google Scholar 

  55. Tan, E. Y., Campo, L., Han, C., Turley, H., Pezzella, F., Gatter, K. C., et al. (2007). BNIP3 as a progression marker in primary human breast cancer; opposing functions in in situ versus invasive cancer. Clinical Cancer Research, 13, 467–74.

    Article  PubMed  CAS  Google Scholar 

  56. Giatromanolaki, A., Koukourakis, M. I., Sowter, H. M., Sivridis, E., Gibson, S., Gatter, K. C., et al. (2004). BNIP3 expression is linked with hypoxia-regulated protein expression and with poor prognosis in non-small cell lung cancer. Clinical Cancer Research, 10, 5566–571.

    Article  PubMed  CAS  Google Scholar 

  57. Sington, J., Giatromanolaki, A., Campo, L., Turley, H., Pezzella, F., & Gatter, K. C. (2007). BNIP3 expression in follicular lymphoma. Histopathology, 50, 555–60.

    Article  PubMed  CAS  Google Scholar 

  58. Koukourakis, M. I., Giatromanolaki, A., Polychronidis, A., Simopoulos, C., Gatter, K. C., Harris, A. L., et al. (2006). Endogenous markers of hypoxia/anaerobic metabolism and anemia in primary colorectal cancer. Cancer Science, 97, 582–88.

    Article  PubMed  CAS  Google Scholar 

  59. Leo, C., Horn, L. C., & Hockel, M. (2006). Hypoxia and expression of the proapoptotic regulator BNIP3 in cervical cancer. International Journal of Gynecological Cancer, 16, 1314–320.

    Article  PubMed  CAS  Google Scholar 

  60. Abe, T., Toyota, M., Suzuki, H., Murai, M., Akino, K., Ueno, M., et al. (2005). Upregulation of BNIP3 by 5-aza-2–deoxycytidine sensitizes pancreatic cancer cells to hypoxia-mediated cell death. Journal of Gastroenterology, 40, 504–10.

    Article  PubMed  CAS  Google Scholar 

  61. Okami, J., Simeone, D. M., & Logsdon, C. D. (2004). Silencing of the hypoxia-inducible cell death protein BNIP3 in pancreatic cancer. Cancer Research, 64, 5338–346.

    Article  PubMed  CAS  Google Scholar 

  62. Erkan, M., Kleeff, J., Esposito, I., Giese, T., Ketterer, K., Buchler, M. W., et al. (2005). Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene, 24, 4421–432.

    Article  PubMed  CAS  Google Scholar 

  63. Akada, M., Crnogorac-Jurcevic, T., Lattimore, S., Mahon, P., Lopes, R., Sunamura, M., et al. (2005). Intrinsic chemoresistance to gemcitabine is associated with decreased expression of BNIP3 in pancreatic cancer. Clinical Cancer Research, 11, 3094–101.

    Article  PubMed  CAS  Google Scholar 

  64. Bacon, A. L., Fox, S., Turley, H., & Harris, A. L. (2007). Selective silencing of the hypoxia-inducible factor 1 target gene BNIP3 by histone deacetylation and methylation in colorectal cancer. Oncogene, 26, 132–41.

    Article  PubMed  CAS  Google Scholar 

  65. Murai, M., Toyota, M., Suzuki, H., Satoh, A., Sasaki, Y., Akino, K., et al. (2005). Aberrant methylation and silencing of the BNIP3 gene in colorectal and gastric cancer. Clinical Cancer Research, 11, 1021–027.

    PubMed  CAS  Google Scholar 

  66. Murai, M., Toyota, M., Satoh, A., Suzuki, H., Akino, K., Mita, H., et al. (2005). Aberrant DNA methylation associated with silencing BNIP3 gene expression in haematopoietic tumours. British Journal of Cancer, 92, 1165–172.

    Article  PubMed  CAS  Google Scholar 

  67. Zamora, R., Alarcon, L., Vodovotz, Y., Betten, B., Kim, P. K., Gibson, K. F., et al. (2001). Nitric oxide suppresses the expression of Bcl-2 binding protein BNIP3 in hepatocytes. Journal of Biological Chemistry, 276, 46887–6895.

    Article  PubMed  CAS  Google Scholar 

  68. Ying, L., & Hofseth, L. J. (2007). An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Research, 67, 1407–410.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian L. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellor, H.R., Harris, A.L. The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev 26, 553–566 (2007). https://doi.org/10.1007/s10555-007-9080-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9080-0

Keywords

Navigation