Skip to main content

Advertisement

Log in

Biochemical approach to the detection and monitoring of metastatic bone disease: What do we know and what questions need answers?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastatic spread to bones frequently occurs in several types of cancer diseases, in particular breast, prostate, and lung cancer. Infiltration of bone by tumour cells is a source of several complications including severe bone pain, spinal cord compression, hypercalcemia, pathologic fractures, all reducing quality of life and worsening prognosis. Therefore, early recognition of bone metastases is among the highest priorities in the clinical management of cancer disease. Currently, detection and staging relies on radiological imaging techniques (scintigraphy, radiography, computer tomography, etc.). Due to their limited sensitivity and/or inconveniences, irradiation, and considerable costs related to serial use, they are not suited for close monitoring of cancer patients to capture skeletal spread in an early stage or to follow-up on therapeutical responses. Interaction of tumour cells with surrounding bone cells leads to enhanced bone resorption and/or bone formation. These cellular processes result in the release of numerous epitopes that, if detected by immunoassays, can reflect the changes of the rate of bone turnover and the occurrence of metastatic spread to bone. Numerous studies reported elevated levels of bone turnover markers in patients with bone metastases proportionally to the extent of skeletal involvement. Furthermore, preliminary data suggest that biomarkers can predict skeletal-related events (SREs), disease progression, and even cancer-related death. The present review intends to summarize the list of emerged biomarkers, major studies assessing their relative utility for detection of bone metastases in different types of cancer disease, and discuss their potentials for becoming part of screening protocols for improving our success rate in the early detection of metastatic bone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horwood, N. J., Elliott, J., Martin, T. J., & Gillespie, M. T. (1998). Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology, 139, 4743–4746.

    Article  PubMed  CAS  Google Scholar 

  2. Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93, 165–176.

    Article  PubMed  CAS  Google Scholar 

  3. Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: Mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology and Neoplasia, 10, 169–180.

    Article  PubMed  Google Scholar 

  4. Fohr, B., Dunstan, C. R., & Seibel, M. J. (2003). Clinical review 165: Markers of bone remodeling in metastatic bone disease. Journal of Clinical Endocrinology and Metabolism, 88, 5059–5075.

    Article  PubMed  CAS  Google Scholar 

  5. Goltzman, D. (1997). Mechanisms of the development of osteoblastic metastases. Cancer, 80, 1581–1587.

    Article  PubMed  CAS  Google Scholar 

  6. Kitagawa, Y., Dai, J., Zhang, J., Keller, J. M., Nor, J., Yao, Z., et al. (2005). Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Research, 65, 10921–10929.

    Article  PubMed  CAS  Google Scholar 

  7. Guise, T. A., & Mohammad, K. S. (2004). Endothelins in bone cancer metastases. Cancer Treatment Reports, 118, 197–212.

    CAS  Google Scholar 

  8. Lee, A. J., Hodges, S., & Eastell, R. (2000). Measurement of osteocalcin. Annals of Clinical Biochemistry, 37, 432–446.

    Article  PubMed  Google Scholar 

  9. Fontana, A., & Delmas, P. D. (2000). Markers of bone turnover in bone metastases. Cancer, 88, 2952–2960.

    Article  PubMed  CAS  Google Scholar 

  10. Garnero, P., Grimaux, M., Seguin, P., & Delmas, P. D. (1994). Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. Journal of Bone and Mineral Research, 9, 255–264.

    PubMed  CAS  Google Scholar 

  11. Rosenquist, C., Qvist, P., Bjarnason, N., & Christiansen, C. (1995). Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clinical Chemistry, 41, 1439–1445.

    Google Scholar 

  12. Leeming, D. J., Koizumi, M., Byrjalsen, I., Li, B., Qvist, P., & Tanko, L. B. (2006). The relative use of eight collagenous and noncollagenous markers for diagnosis of skeletal metastases in breast, prostate, or lung cancer patients. Cancer Epidemiology, Biomarkers & Prevention, 15, 32–38.

    Article  CAS  Google Scholar 

  13. Gomez, B. Jr., Ardakani, S., Ju, J., Jenkins, D., Cerelli, M. J., Daniloff, G. Y., et al. (1995). Monoclonal antibody assay for measuring bone-specific alkaline phosphatase activity in serum. Clinical Chemistry, 41, 1560–1566.

    PubMed  CAS  Google Scholar 

  14. Orum, O., Hansen, M., Jensen, C. H., Sorensen, H. A., Jensen, L. B., Horslev-Petersen, K., et al. (1996). Procollagen type I N-terminal propeptide (PINP) as an indicator of type I collagen metabolism: ELISA development, reference interval, and hypovitaminosis D induced hyperparathyroidism. Bone, 19, 157–163.

    Article  PubMed  CAS  Google Scholar 

  15. Cloos, P. A., Lyubimova, N., Solberg, H., Qvist, P., Christiansen, C., Byrjalsen, I., & Christgau, S. (2004). An immunoassay for measuring fragments of newly synthesized collagen type I produced during metastatic invasion of bone. Clinical Laboratory, 50, 279–289.

    PubMed  CAS  Google Scholar 

  16. Risteli, J., Elomaa, I., Niemi, S., Novamo, A., & Risteli, L. (1993). Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: A new serum marker of bone collagen degradation. Clinical Chemistry, 39, 635–640.

    PubMed  CAS  Google Scholar 

  17. Garnero, P., Ferreras, M., Karsdal, M. A., Nicamhlaoibh, R., Risteli, J., Borel, O., et al. (2003). The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. Journal of Bone and Mineral Research, 18, 859–867.

    Article  PubMed  CAS  Google Scholar 

  18. Sassi, M. L., Eriksen, H., Risteli, L., Niemi, S., Mansell, J., Gowen, M., et al. (2000). Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: Loss of antigenicity by treatment with cathepsin K. Bone, 26, 367–373.

    Article  PubMed  CAS  Google Scholar 

  19. Hanson, D. A., Weis, M. A., Bollen, A. M., Maslan, S. L., Singer, F. R., & Eyre, D. R. (1992). A specific immunoassay for monitoring human bone resorption: Quantitation of type I collagen cross-linked N-telopeptides in urine. Journal of Bone and Mineral Research, 7, 1251–1258.

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka, S., Nakamura, K., Takahasi, N., & Suda, T. (2005). Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunological Reviews, 208, 30–49.

    Article  PubMed  CAS  Google Scholar 

  21. Hofbauer, L. C., & Heufelder, A. E. (2001). Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. Journal of Molecular Medicine, 79, 243–253.

    Article  PubMed  CAS  Google Scholar 

  22. Nakasato, Y. R., Janckila, A. J., Halleen, J. M., Vaananen, H. K., Walton, S. P., & Yam, L. T. (1999). Clinical significance of immunoassays for type-5 tartrate-resistant acid phosphatase. Clinical Chemistry, 45, 2150–2157.

    PubMed  CAS  Google Scholar 

  23. Alatalo, S. L., Halleen, J. M., Hentunen, T. A., Monkkonen, J., & Vaananen, H. K. (2000). Rapid screening method for osteoclast differentiation in vitro that measures tartrate-resistant acid phosphatase 5b activity secreted into the culture medium. Clinical Chemistry, 46, 1751–1754.

    PubMed  CAS  Google Scholar 

  24. Chao, T. Y., Yu, J. C., Ku, C. H., Chen, M. M., Lee, S. H., Janckila, A. J., et al. (2005). Tartrate-resistant acid phosphatase 5b is a useful serum marker for extensive bone metastasis in breast cancer patients. Clinical Cancer Research, 11, 544–550.

    PubMed  CAS  Google Scholar 

  25. Coleman, R. E. (1997). Skeletal complications of malignancy. Cancer, 80, 1588–1594.

    Article  PubMed  CAS  Google Scholar 

  26. Koizumi, M., Yamada, Y., Takiguchi, T., Nomura, E., Furukawa, M., Kitahara, T., et al. (1995). Bone metabolic markers in bone metastases. Journal of Cancer Research and Clinical Oncology, 121, 542–548.

    Article  PubMed  CAS  Google Scholar 

  27. Aruga, A., Koizumi, M., Hotta, R., Takahashi, S., & Ogata, E. (1997). Usefulness of bone metabolic markers in the diagnosis and follow-up of bone metastasis from lung cancer. British Journal of Cancer, 76, 760–764.

    PubMed  CAS  Google Scholar 

  28. Garnero, P., Buchs, N., Zekri, J., Rizzoli, R., Coleman, R. E., & Delmas, P. D. (2000). Markers of bone turnover for the management of patients with bone metastases from prostate cancer. British Journal of Cancer, 82, 858–864.

    Article  PubMed  CAS  Google Scholar 

  29. Fukumitsu, N., Uchiyama, M., Mori, Y., Kishimoto, K., & Nakada, J. (2003). A comparative study of prostate specific antigen (PSA), C-terminal propeptide of blood type I procollagen (PICP) and urine type I collagen-crosslinked N telopeptide (NTx) levels using bone scintigraphy in prostate cancer patients. Annals of Nuclear Medicine, 17, 297–303.

    Article  PubMed  CAS  Google Scholar 

  30. Luftner, D., Jozereau, D., Schildhauer, S., Geppert, R., Muller, C., Fiolka, G., et al.(2005). PINP as serum marker of metastatic spread to the bone in breast cancer patients. Anticancer Research, 25, 1491–1499.

    PubMed  CAS  Google Scholar 

  31. Chrapko, B. E., Nocun, A., Golebiewska, R., Jankowska, H., & Zaorska-Rajca, J. (2005). Bone turnover markers and bone scintigraphy in the evaluation of the skeletal metastases. Nuclear Medicine Review. Central & Eastern Europe, 8, 100–104.

    Google Scholar 

  32. Lyubimova, N. V., Pashkov, M. V., Tyulyandin, S. A., Gol’dberg, V. E., & Kushlinskii, N. E. (2004). Tartrate-resistant acid phosphatase as a marker of bone metastases in patients with breast cancer and prostate cancer. Bulletin of Experimental Biology and Medicine, 138, 77–79.

    PubMed  CAS  Google Scholar 

  33. Koizumi, M., Takahashi, S., & Ogata, E. (2003). Comparison of serum bone resorption markers in the diagnosis of skeletal metastasis. Anticancer Research, 23, 4095–4099.

    PubMed  CAS  Google Scholar 

  34. Jung, K., Lein, M., Stephan, C., Von Hosslin, K., Semjonow, A., Sinha, P., et al. (2004). Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: Diagnostic and prognostic implications. International Journal of Cancer, 111, 783–791.

    Article  CAS  Google Scholar 

  35. Jung, K., Stephan, C., Semjonow, A., Lein, M., Schnorr, D., & Loening, S. A. (2003). Serum osteoprotegerin and receptor activator of nuclear factor-kappa B ligand as indicators of disturbed osteoclastogenesis in patients with prostate cancer. Journal of Urology, 70, 2302–2305.

    Article  Google Scholar 

  36. Ebert, W., Muley, T., Herb, K. P., & Schmidt-Gayk, H. (2004). Comparison of bone scintigraphy with bone markers in the diagnosis of bone metastasis in lung carcinoma patients. Anticancer Research, 24, 3193–3201.

    PubMed  CAS  Google Scholar 

  37. Oremek, G. M., Weis, A., Sapoutzis, N., & Sauer-Eppel, H. (2003). Diagnostic value of bone and tumour markers in patients with malignant diseases. Anticancer Research, 23, 987–990.

    PubMed  CAS  Google Scholar 

  38. Demers, L. M., Costa, L., & Lipton, A. (2000). Biochemical markers and skeletal metastases. Cancer, 88, 2919–2926.

    Article  PubMed  CAS  Google Scholar 

  39. Leeming, D. J., Delling, G., Koizumi, M., Henriksen, K., Karsdal, M. A., Li, B., et al. (2006). Alpha CTX as a biomarker of skeletal invasion of breast cancer: Immunolocalization and the load dependency of urinary excretion. Cancer Epidemiology, Biomarkers & Prevention, 15, 1392–1395.

    Article  CAS  Google Scholar 

  40. Brown, J. E., Thomson, C. S., Ellis, S. P., Gutcher, S. A., Purohit OP, & Coleman, R. E. (2003). Bone resorption predicts for skeletal complications in metastatic bone disease. British Journal of Cancer, 89, 2031–2037.

    Article  PubMed  CAS  Google Scholar 

  41. Brown, J. E., Cook, R. J., Major, P., Lipton, A., Saad, F., Smith, M., et al. (2005). Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. Journal of the National Cancer Institute, 97, 59–69.

    Article  PubMed  CAS  Google Scholar 

  42. Coleman, R. E., Major, P., Lipton, A., Brown, J. E., Lee, K. A., Smith M., et al. (2005). Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. Journal of Clinical Oncology, 23, 4925–4935.

    Article  PubMed  CAS  Google Scholar 

  43. Bombardieri, E., Martinetti, A., Miceli, R., Mariani, L., Castellani, M. R., & Seregni, E. (1997). Can bone metabolism markers be adopted as an alternative to scintigraphic imaging in monitoring bone metastases from breast cancer? European Journal of Nuclear Medicine, 24, 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  44. Pectasides, D., Farmakis, D., Nikolaou, M., Kanakis, I., Kostopoulou, V., Papaconstantinou, I., et al. (2005). Diagnostic value of bone remodeling markers in the diagnosis of bone metastases in patients with breast cancer. Journal of Pharmaceutical and Biomedical Analysis, 37, 171–176.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László B. Tankó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tankó, L.B., Karsdal, M.A., Christiansen, C. et al. Biochemical approach to the detection and monitoring of metastatic bone disease: What do we know and what questions need answers?. Cancer Metastasis Rev 25, 659–668 (2006). https://doi.org/10.1007/s10555-006-9024-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9024-0

Keywords

Navigation