Skip to main content

Advertisement

Log in

Experimental frontiers for clinical applications: Novel approaches to understanding mechanisms of lymph Node metastases in melanoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 10 July 2008

Abstract

Sentinel lymph nodes are the first nodes to receive lymph from primary tumors and are the preferential site of initial metastases. Sentinel nodes show morphology changes that suggests immune modulation with reduced antigen-presenting dendritic cells, activated T lymphocytes, high endothelial venules and transvenular migration of T lymphocytes. Tumor cells generate down-regulatory molecules. We postulate that tumor-induced immune dysfunction facilitates establishment of nodal metastases. Nodal immune modulation can be reversed by granulocyte macrophage colony-stimulating factor (GMCSF), a finding with implications for future therapy to prevent or reverse these nodal metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischer B, Fischer ER: Studies concerning the regional lymph node. II. Maintenance of immunity. Cancer (Philad) 27: 1001–1004, 1971

    Google Scholar 

  2. Cochran AJ, Wen DR, Farzad Z, Stene MA, McBride W, Lana AM, Hoon DS, Morton DL.: Immunosuppression by melanoma cells as a factor in the generation of metastatic disease. Anticancer Res 9: 859–864, 1989

    PubMed  CAS  Google Scholar 

  3. Morton DL, Wen DR, Wong JH, Economou JS, Cagle LA, Storm FK, Foshag LJ, Cochran AJ.: Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127: 392–399, 1992

    PubMed  CAS  Google Scholar 

  4. Cochran AJ, Balda BR, Starz H, Bachter D, Krag DN, Cruse CW, Pijpers R, Morton DL.: The Augsburg consensus: A commentary on the techniques of lymphatic mapping and sentinel lymphadenectomy and completion lymphadenectomy in cutaneous malignancies. Cancer 89: 236–241, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Cochran AJ, Morton DL, Stern S, Lana AM, Essner R, Wen DR.: Sentinel lymph nodes show profound downregulation of antigen—presenting cells of the paracortex: Implications for tumor biology and treatment. Mod Pathol 14: 604–608, 2001

    Article  PubMed  CAS  Google Scholar 

  6. Lana AM, Wen DR, Cochran AJ: The morphology, immunophenotype and distribution of paracortical dendritic leukocytes in lymph nodes regional to cutaneous melanoma. Melanoma Res 11: 401–410, 2001

    Article  PubMed  CAS  Google Scholar 

  7. Vuylsteke RJ, Molenkamp BG, Gietema HA, van Leeuwen PA, Wijnands PG, Vos W, van Diest PJ, Scheper RJ, Meijer S, de Gruijl TD.: Local administration of granulocyte/macrophage colony-stimulating factor increases the number and activation state of dendritic cells in the sentinel lymph node of early-stage melanoma. Cancer Res 64: 8456–8460, 2004

    Article  PubMed  CAS  Google Scholar 

  8. Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, Essner R.: Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res11: 107–112, 2005

    PubMed  CAS  Google Scholar 

  9. Tsakraklides E, Tsakraklides V, Ashikari H, Rosen PP, Siegal FP, Robbins GF, Good RA.: In vitro studies of axillary lymph node cells in patients with breast cancer. J Natl Cancer Inst 54: 549–556, 1975

    PubMed  CAS  Google Scholar 

  10. Reiss CK, Volenec FJ, Humphrey M, Singla O, Humphrey LJ: The role of the regional lymph node in breast cancer: A comparison between nodal and systemic reactivity. J Surg Oncol 22: 249–53, 1983

    PubMed  CAS  Google Scholar 

  11. Kokoschka EM, Uchida A, Yanagawa E, Mickshe M, Kokoshka R: Spontaneous and inducible natural cyto-toxicity in lymph-nodes draining primary melanoma. J Invest Dermatol 80: 368, 1983

    Google Scholar 

  12. Cochran AJ, Pihl E, Wen DR, Hoon DS, Korn EL: Zoned immune suppression of lymph nodes draining malignant melanoma: Histologic and immunohistologic studies. J Natl Cancer Inst 78: 399–405, 1987

    PubMed  CAS  Google Scholar 

  13. Hoon DS, Korn EL, Cochran AJ Variations in functional immunocompetence of individual tumor-draining lymph nodes in humans. Cancer Res 47: 1740–1744, 1987

    PubMed  CAS  Google Scholar 

  14. Wen DR, Hoon DS, Cochran AJ: Variations in lymphokine generation by individual lymph nodes draining human malignant tumors. Cancer Immunol Immunother 30: 277–282, 1989

    Article  PubMed  CAS  Google Scholar 

  15. Farzad Z, Cochran AJ, McBride WH, Gray JD, Wong V, Morton DL: Lymphocyte subset alterations in nodes regional to human cutaneous melanoma. Cancer Res 50: 3585–3588, 1990

    PubMed  CAS  Google Scholar 

  16. Morton BA, Ramey WG, Paderon H, Moller RE: Monoclonal antibody-defined phenotypes of regional lymph nodes and peripheral blood lymphocyte subpopulations in early breast cancer. Cancer Res 46: 2121–2126, 1986

    PubMed  CAS  Google Scholar 

  17. Farzad Z, McBride WH, Ogbechi H, Asnong-Holthoff C, Morton DL, Cochran AJ: Lymphocytes from lymph nodes at different distances from human melanoma vary in their capacity to inhibit/enhance tumor cell growth in vitro. Melanoma Res 7: S59–65, 1997

    PubMed  CAS  Google Scholar 

  18. Hoon DSB, Bowker RJ, Cochran AJ: Suppressor cell activity in melanoma-draining lymph nodes. Cancer Res 47: 1529–1533, 1987

    PubMed  CAS  Google Scholar 

  19. Morton DL, Cochran AJ: The case for lymphatic mapping and sentinel lymphadenectomy in the management of primary melanoma. Br J Dermatol 151: 308–319, 2004

    Article  PubMed  CAS  Google Scholar 

  20. Cochran AJ, Wen DR, Morton DL: Occult melanoma cells in the lymph nodes of patients with pathological Stage I malignant melanoma: An immunohistological study. Am J Surg Pathol 12: 612–618, 1988

    PubMed  CAS  Google Scholar 

  21. Wong JH, Cagle LA, Morton DL: Lymphatic drainage of skin to a sentinel lymph node in a feline model. Ann Surg 214: 637–641, 1991

    PubMed  CAS  Google Scholar 

  22. Morton DL, Cochran AJ, Thompson JF, Elashoff R, Essner R, Glass EC, Mozzillo N, Nieweg OE, Roses DF, Hoekstra HJ, Karakousis CP, Reintgen DS, Coventry BJ, Wang H-J; the Multicenter Selective Lymphadenectomy Trial Group: Multicenter selective lymphadenectomy trial group. Sentinel node biopsy for early-stage melanoma: Accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg 242: 302–311, 2005

    PubMed  Google Scholar 

  23. Cochran AJ, et al.: Update on lymphatic mapping and sentinel node biopsy in the management of patients with melanocytic tumors. Pathology 36: 1–7, 2004

    Article  Google Scholar 

  24. Morton DL, et al.: Interim results of the multicenter selective lymphadenectomy trial (MSLT-I) in clinical stage I melanoma [abstract 7500]. J Clin Oncol 23(16S): 710S, 2005

    Google Scholar 

  25. Gershenwald JE, Colome MI, Lee JE, Mansfield PF, Tseng C, Lee JJ, Balch CM, Ross MI: Patterns of recurrence following a negative sentinel lymph node biopsy in 243 patients with stage I or II melanoma. J Clin Oncol 16: 2253–2260, 1998

    PubMed  CAS  Google Scholar 

  26. Gadd MA, Cosimi AB, Yu J, Duncan LM, Yu L, Flotte TJ, Souba WW, Ott MJ, Wong LS, Sober AJ, Mihm MC, Haluska FG, Tanabe KK: Outcome of patients with melanoma and histologically negative sentinel lymph nodes. Arch Surg 134: 381–387, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Jansen L, Nieweg OE, Peterse JL, Hoefnagel CA, Olmos RA, Kroon BB: Reliability of sentinel lymph node biopsy for staging melanoma. Br J Surg 87: 484–489, 2000

    Article  PubMed  CAS  Google Scholar 

  28. Clary BM, Brady MS, Lewis JJ, Coit DG: Sentinel lymph node biopsy in the management of patients with primary cutaneous melanoma: Review of a large single-institutional experience with an emphasis on recurrence. Ann Surg 233: 250–258, 2001

    Article  PubMed  CAS  Google Scholar 

  29. Zogakis TG, Essner R, Wang HJ, Turner RR, Takasumi YT, Gaffney RL, Lee JH, Morton DL: Melanoma recurrence patterns after negative sentinel lymphadenectomy. Arch Surg 140: 865–871, 2005

    Article  PubMed  Google Scholar 

  30. Cochran AJ, Roberts AA, Saida T: The place of lymphatic mapping and sentinel node biopsy in oncology. Int J Clin Oncol 8: 139–150, 2003

    Article  PubMed  Google Scholar 

  31. Lee JH, Essner R, Torisu-Itakura H, Wanek L, Wang H, Morton DL: Factors predictive of tumor-positive nonsentinel lymph nodes after tumor-positive sentinel lymph node dissection for melanoma. J Clin Oncol 22: 3677–3684, 2004

    Article  PubMed  Google Scholar 

  32. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811, 2000

    Article  PubMed  CAS  Google Scholar 

  33. Laguens G, Coronato S, Laguens R, Portiansky E, DiGirolamo V: Human regional lymph nodes draining cancer exhibit a profound dendritic cell depletion as comparing to those from patients without malignancies. Immunol Lett 84: 159–162, 2002

    Article  PubMed  CAS  Google Scholar 

  34. Huang RR, Wen DR, Guo J, Giuliano AE, Nguyen M, Offodile R, Stern S, Turner R, Cochran AJ: Selective Modulation of paracortical dendritic cells and T lymphocytes in breast cancer sentinel nodes. Breast J 6: 225–232, 2000

    Article  PubMed  Google Scholar 

  35. Botella-Estrada R, Dasi F, Ramos D, Nagore E, Herrero MJ, Gimenez J, Fuster C, Sanmartin O, Guillen C, Alino S: Cytokine expression and dendritic cell density in melanoma sentinel nodes. Melanoma Res 15(2): 99–106, 2005

    Article  PubMed  CAS  Google Scholar 

  36. Huang RR, et al.: MHC-Class II molecules expression by dendritic cells correlates with activated OPD4+T cell in sentinel and non-sentinel nodes from melanoma patients. Mod Pathol 17(Suppl 1): 382, 2004

    Article  CAS  Google Scholar 

  37. Huang RR, et al.: Sentinel lymph nodes are immunosuppressed whether or not they contain metastatic melanoma Mod Pathol 18(Suppl 1): 379, 2005

    Google Scholar 

  38. Vermi W, Bonecchi R, Facchetti F, Bianchi D, Sozzani S, Festa S, Berenzi A, Cella M, Colonna M: Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 200: 255–268, 2003

    Article  PubMed  Google Scholar 

  39. Sakakura K, Chikamatsu K, Sakurai T, Takahashi K, Murata T, Oriuchi N, Furuya N: Infiltration of dendritic cells and NK cells into the sentinel lymph node in oral cavity cancer. Oral Oncol 41(1): 89–96, 2005

    Article  PubMed  CAS  Google Scholar 

  40. Ishigami S, Natsugoe S, Uenosono Y, Hata Y, Nakajo A, Miyazono F, Matsumoto M, Hokita S, Aikou T: Infiltration of antitumor immunocytes into the sentinel node in gastric cancer. J Gastrointest Surg 7: 735–739, 2003

    Article  PubMed  Google Scholar 

  41. Straten PT, et al.: Identification of identical TCRs in primary melanoma lesions and tumor free corresponding sentinel lymph nodes. Cancer Immunol Immunother July 7: 2005 Epub

  42. Ross R, Ross XL, Schwing J, Langin T, Reske-Kunz AB: The actin-bundling protein fascin is involved in the formation of dendritic processes in maturing epidermal Langerhans cells. J Immunol 160: 3776–3782, 1998

    PubMed  CAS  Google Scholar 

  43. Movassagh M, Spatz A, Davoust J, Lebecque S, Romero P, Pittet M, Rimoldi D, Lienard D, Gugerli O, Ferradini L, Robert C, Avril MF, Zitvogel L, Angevin E: Selective accumulation of mature DC-Lamp+ dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Res 64: 2192–2198, 2004

    Article  PubMed  CAS  Google Scholar 

  44. Inaba K, Pack M, Inaba M, Sakuta H, Isdell F, Steinman RM: High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes. J Exp Med 186: 665–672, 1997

    Article  PubMed  CAS  Google Scholar 

  45. Poindexter NJ, Sahin A, Hunt KK, Grimm EA: Analysis of dendritic cells in tumor-free and tumor-containing sentinel nodes from patients with breast cancer. Breast Cancer Res 6: R408–415, 2004

    Article  PubMed  CAS  Google Scholar 

  46. Schüle JM, Bergkvist L, Håkansson L, Gustafsson B, Håkansson A: CD28 expression in sentinel node biopsies from breast cancer patients in comparison with CD3-zeta chain expression. J Transl Med 2(1): 45, 2004

    Article  PubMed  CAS  Google Scholar 

  47. Peguet-Navarro J, Sportouch M, Popa I, Berthier O, Schmitt D, Portoukalian J: Gangliosides from human melanoma tumors impair dendritic cells differentiation from monocytes and induce their apoptosis. J Immunol 170: 3488–94, 2003

    PubMed  CAS  Google Scholar 

  48. Essner R, Kojima M: Surgical and molecular approaches to the sentinel lymph nodes. Ann Surg Oncol 8(9 Suppl): 31S–34S, 2001

    PubMed  CAS  Google Scholar 

  49. Wang S, Fan P, Wu ZY: Preliminary study on lymphocyte subsets of sentinel lymph nodes in breast cancer patients Zhonghua Zhong Liu Za Zhi 26: 220–222, 2004 Chinese

    PubMed  Google Scholar 

  50. Gimeno MJ, Pascual G, Garcia-Honduvilla N, Prieto A, Alvarez de Mon M, Bellon JM, Bujan J: Modulatory role of IL10 in endothelial cell damage and platelet adhesion. Histol Histopathol 18: 695–702, 2003

    PubMed  CAS  Google Scholar 

  51. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M: VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201: 1089–1099, 2005

    Article  PubMed  CAS  Google Scholar 

  52. Haigh PI, Lucci A, Turner RR, Bostick PJ, Krasne DL, Stern SL, Morton DL: Carbon dye histologically confirms the identity of sentinel lymph nodes in cutaneous melanoma. Cancer 92: 535–41, 2001

    Article  PubMed  CAS  Google Scholar 

  53. Morton DL, Hoon DS, Cochran AJ, Turner RR, Essner R, Takeuchi H, Wanek LA, Glass E, Foshag LJ, Hsueh EC, Bilchik AJ, Elashoff D, Elashoff R: Lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: Therapeutic utility and implications of nodal microanatomy and molecular staging for improving the accuracy of detection of nodal micrometastases. Ann Surg 238: 538–549, 2003

    PubMed  Google Scholar 

  54. Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC: Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 160: 4587–4595, 1998

    PubMed  CAS  Google Scholar 

  55. Geissmann F, Dieu-Nosjean MC, Dezutter C, Valladeau J, Kayal S, Leborgne M, Brousse N, Saeland S, Davoust J: Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 196: 417–430, 2002

    Article  PubMed  CAS  Google Scholar 

  56. Itakura E, Huang RR, Wen DR, Cochran AJ: Is sentinel node susceptibility to metastases influenced by tumor-derived cytokines? RT in situ PCR studies. Mod Pathol 17(Suppl 1): 385, 2004

    Google Scholar 

  57. Leong SP, Peng M, Zhou YM, Vaquerano JE, Chang JWC: Cytokine profiles of sentinel lymph nodes draining the primary melanoma. Ann Surg Oncol 9: 82–87, 2002

    Article  PubMed  Google Scholar 

  58. Essner R, Kojima M: Dendritic cell function in sentinel nodes. Oncology (Williston Park) 16(1 Suppl 1): 27–31, 2002

    Google Scholar 

  59. Seo N, Hayakawa S, Takigawa M, Tokura Y: Interleukin-10 expressed at early tumour sites induces subsequent generation of CD4+ T-regulatory cells and systemic collapse of antitumour immunity. Immunology 103: 449–457, 2001

    Article  PubMed  CAS  Google Scholar 

  60. Yue FY, Dummer R, Geertsen R, Hofbauer G, Laine E, Manolio S, Burg G: Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 71: 630–637, 1997

    Article  PubMed  CAS  Google Scholar 

  61. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH: Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8+ T cells resulting in a failure to lyse tumor cells. Blood 93: 1634–1642, 1999

    PubMed  CAS  Google Scholar 

  62. Steinbrink K, Graulich E, Kubsch S, Knop J, Enk AH: CD4+ and CD8+ anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 99: 2468–2476, 2002

    Article  PubMed  CAS  Google Scholar 

  63. Takayama T, Tahara H, Thomson AW: Differential effects of myeloid dendritic cells retrovirally transduced to express mammalian or viral interleukin-10 on cytotoxic T lymphocyte and natural killer cell functions and resistance to tumor growth. Transplantation 71: 1334–1340, 2001

    Article  PubMed  CAS  Google Scholar 

  64. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, Slingluff CL Jr, Mellor AL: Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297: 1867–1870, 2002

    Article  PubMed  CAS  Google Scholar 

  65. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB: Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196: 459–468, 2002

    Article  PubMed  CAS  Google Scholar 

  66. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL: Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281: 1191–1193, 1998

    Article  PubMed  CAS  Google Scholar 

  67. Widner B, Weiss G, Fuchs D: Tryptophan degradation to control T-cell responsiveness. Immunol Today 21: 250, 2000

    Article  PubMed  CAS  Google Scholar 

  68. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA: International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52(1): 145–176, 2000

    PubMed  CAS  Google Scholar 

  69. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C: Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188: 373–386, 1998

    Article  PubMed  CAS  Google Scholar 

  70. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M: CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99: 23–33, 1999

    Article  PubMed  CAS  Google Scholar 

  71. Nakano H, Tamura T, Yoshimoto T, Yagita H, Miyasaka M, Butcher EC, Nariuchi H, Kakiuchi T, Matsuzawa A: Genetic defect in T lymphocyte-specific homing into peripheral lymph nodes. Eur J Immunol 27: 215–221, 1997

    PubMed  CAS  Google Scholar 

  72. Willimann K, Legler DF, Loetscher M, Roos RS, Delgado MB, Clark-Lewis I, Baggiolini M, Moser B: The chemokine SLC is expressed in T-cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 28: 2025–2034, 1998

    Article  PubMed  CAS  Google Scholar 

  73. Zlotnik A, Yoshie O: Chemokines: A new classification system and their role in immunity. Immunity 12: 121–127, 2000

    Article  PubMed  CAS  Google Scholar 

  74. Moretta A: Natural killer cells and dendritic cells: Rendezvous in abused tissues. Nat Rev Immunol 2: 957–964, 2002

    Article  PubMed  CAS  Google Scholar 

  75. Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O: Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 273: 7118–7122, 1998

    Article  PubMed  CAS  Google Scholar 

  76. Yanagihara S, Komura E, Nagafune J, Watarai H, Yamaguchi Y: EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J Immunol 161: 3096–3102, 1998

    PubMed  CAS  Google Scholar 

  77. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H: Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189: 451–460, 1999

    Article  PubMed  CAS  Google Scholar 

  78. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT: A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA. 95: 258–263, 1998

    Article  PubMed  CAS  Google Scholar 

  79. Takeuchi H, Fujimoto A, Tanaka M, Yamano T, Hsueh E, Hoon DS: CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res 10: 2351–2358, 2004

    Article  PubMed  CAS  Google Scholar 

  80. Hoon DSB, Irie RF, Cochran AJ: Gangliosides from human melanoma immunomodulate the response of T cells to interleukin-2. Cell. Immunol 111: 410–419, 1988

    CAS  Google Scholar 

  81. Hoon DSB, Jung T, Naungayan J, Cochran AJ, Morton DL, McBride WH: Modulation of human macrophage functions by gangliosides. Immunol Lett 20: 269–276, 1989

    Article  PubMed  CAS  Google Scholar 

  82. Cochran AJ, Hoon DSB, Korn EL, Ferraro A, Stene M: Effect of indomethacin on the immunocompetence of human tumor-draining lymph nodes. Fed Proc 44: 965A, 1985

    Google Scholar 

  83. Gupta RK, Morton DL: Studies of a melanoma tumor-associated antigen detected in the spent culture medium of a human melanoma cell line by allogeneic antibody. J Natl Cancer Inst 72: 75–82, 1984

    PubMed  CAS  Google Scholar 

  84. Hendrix M, Seftor E, Kirschmann D, Quaranta V, Seftor R: Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann NY Acad Sci 995: 151–161, 2003

    Article  PubMed  CAS  Google Scholar 

  85. Littlepage LE, Egeblad M, Werb Z: Coevolution of cancer and stromal cellular responses. Cancer Cell 7: 499–500, 2005

    Article  PubMed  CAS  Google Scholar 

  86. Vaquero J, Martinez R: Intratumoral immunotherapy with interferon-alpha and interleukin-2 in glioblastoma. Neuroreport 3: 981–983, 1992

    Article  PubMed  CAS  Google Scholar 

  87. Ridoli L, Ridoli R: Preliminary experiences of intralesional immunotherapy in cutaneous metastatic melanoma. Hepatogastroenterology 49: 335–339, 2002

    Google Scholar 

  88. Vogelzang NJ, Lestingi TM, Sudakoff G, Kradjian SA: Phase I study of immunotherapy of metastatic renal cell carcinoma by direct gene transfer into metastatic lesions. Hum Gene Ther 5: 1357–1370, 1994

    PubMed  CAS  Google Scholar 

  89. Gupta R, McElrath-Garza A, Morton D: Role of melanoma-associated antigens. In Hearing VJ, Leong SPL (eds) Melanocytes to Melanoma. Humana Press, Totowa, NJ; In Press

  90. Morton D, et al.: BCG immunotherapy of malignant melanoma: Summary of a seven-year experience. Ann Surg 180: 635–643, 1974

    PubMed  CAS  Google Scholar 

  91. Rosenberg SA, Rapp HJ: Intralesional immunotherapy of melanoma with BCG. Med Clin North Am 60: 419–430, 1976

    PubMed  CAS  Google Scholar 

  92. Dranoff G, et al.: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90: 3539–3543, 1993

    Article  PubMed  CAS  Google Scholar 

  93. Leong SP, Enders-Zohr P, Zhou YM, Stuntebeck S, Habib FA, Allen RE Jr, Sagebiel RW, Glassberg AB, Lowenberg DW, Hayes FA: Recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF) and autologous melanoma vaccine mediate tumor regression in patients with metastatic melanoma. J Immunother 22: 166–174, 1999

    Article  PubMed  CAS  Google Scholar 

  94. Dranoff G: GM-CSF-based cancer vaccines. Immunol Rev 188: 147–154, 2002

    Article  PubMed  CAS  Google Scholar 

  95. Sun X, Hodge L, Jones H, Tabor L, Simecka J: Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 20: 1466–1474, 2002

    Article  PubMed  CAS  Google Scholar 

  96. Kass E, Panicali DL, Mazzara G, Schlom J, Greiner JW: Granulocyte/macrophage-colony stimulating factor produced by recombinant avian poxviruses enriches the regional lymph nodes with antigen-presenting cells and acts as an immunoadjuvant. Cancer Res 61: 206–214, 2001

    PubMed  CAS  Google Scholar 

  97. Nakamura M, Iwahashi M, Nakamori M, Ueda K, Matsuura I, Noguchi K, Yamaue H: Dendritic cells genetically engineered to simultaneously express endogenous tumor antigen and granulocyte macrophage colony-stimulating factor elicit potent therapeutic antitumor immunity. Clin Cancer Res 8: 2742–2749, 2002

    PubMed  CAS  Google Scholar 

  98. Pinedo HM, Buter J, Luykx-de Bakker SA, Pohlmann PR, van Hensbergen Y, Heideman DA, van Diest PJ, de Gruijl TD, van der Wall E: Extended neoadjuvant chemotherapy in locally advanced breast cancer combined with GM-CSF: Effect on tumour-draining lymph node dendritic cells. Eur J Cancer 39: 1061–1067, 2003

    Article  PubMed  CAS  Google Scholar 

  99. Molenkamp BG, Vuylsteke RJ, van Leeuwen PA, Meijer S, Vos W, Wijnands PG, Scheper RJ, de Gruijl TD: Matched skin and sentinel lymph node samples of melanoma patients reveal exclusive migration of mature dendritic cells. Am J Pathol 167: 1301–1307, 2005

    PubMed  Google Scholar 

  100. Vaquerano JE, Cadbury P, Treseler PA, Sagebiel RW, Leong SPL: Regression of in-transit melanoma of the scalp with intralesional recombinant human granulocyte macrophage-colony stimulating factor (rhGM-CSF). Arch Dermatol 135: 1276–1277, 1999

    Article  PubMed  CAS  Google Scholar 

  101. Si Z, Hersey P, Coates AS: Clinical responses and lymphoid infiltrates in metastatic melanoma following treatment with intralesional GM-CSF. Melanoma Res 6: 247–255, 1996

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Essner.

Additional information

Presented as a lunch mini-symposium of the First International Symposium on Cancer Metastasis and the Lymphovascular System. April 28–30, 2005, San Francisco, CA.

Supported by NIH grant LA 12382 and LA 29605 and Saban Family Foundation.

An erratum to this article is available at http://dx.doi.org/10.1007/s10555-008-9161-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Essner, R. Experimental frontiers for clinical applications: Novel approaches to understanding mechanisms of lymph Node metastases in melanoma. Cancer Metastasis Rev 25, 257–267 (2006). https://doi.org/10.1007/s10555-006-8506-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-8506-4

Keywords

Navigation