Skip to main content

Advertisement

Log in

Molecular targeting of the lymphovascular system for imaging and therapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Progress toward targeting cancer cells is a multi-disciplinary endeavor. In addition to the surgical and oncology specialties, radiologists collaborate with mathematicians, computer scientists, and physicists, in a constant effort to incrementally improve upon the current imaging modalities. Recently, radiologists have formed collaborations with molecular biologists and chemists in order to develop molecular agents that target cancer cells via receptor-substrate or specific physiochemical interactions. In this review, we summarize selected efforts toward molecular targeting of the lymphovascular system. Standard imaging modalities, positron emission tomography, single photon emission tomography, and ultrasound, are reviewed as well as, the targeted introduction of substances for endolymphatic therapy. We also review the current status of sentinel lymph node mapping with radiocolloids and the application of molecular targeting for the development of a radiopharmaceutical specifically designed for sentinel lymph node mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoh CK, Hawkins RA, Glaspy JA, Dahlbom M, Tse NY, Hoffman EJ, Schiepers C, Choi Y, Rege S, Nitzsche E, Maddahi J, Phelps ME: Cancer detection with whole-body PET using 2-[18F] fluoro-2-deoxy-D-glucose. J Comp Asst Tomogr 17: 582–589, 1993

    Article  CAS  Google Scholar 

  2. Phelps ME: Inaugural article: Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97: 9226–9233, 2000

    Article  PubMed  CAS  Google Scholar 

  3. Schoder H, Erdi YE, Larson SM, Yeung HW: PET/CT: A new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 30: 1419–1437, 2003

    Article  PubMed  Google Scholar 

  4. Avril NE, Weber WA: Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 43: 189–204, 2005

    Article  PubMed  Google Scholar 

  5. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J: Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115: 44–55, 2005

    Article  PubMed  CAS  Google Scholar 

  6. Fidler IJ: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–458, 2003

    Article  PubMed  CAS  Google Scholar 

  7. Warburg O, Wind F, Negelein E: The metabolism of tumors in the body. J Physiol (Lond) 8: 519–530, 1927

    CAS  Google Scholar 

  8. Warburg O: The metabolism of tumors. Richard R. Smith, Inc, New York, 1931

    Google Scholar 

  9. Weber G: Enzymology of cancer cells (first of two parts). N Engl J Med 296: 486–492, 1977

    Article  PubMed  CAS  Google Scholar 

  10. Weber G: Enzymology of cancer cells (second of two parts). N Engl J Med 296: 541–551, 1977

    Article  PubMed  CAS  Google Scholar 

  11. Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732, 2003

    Article  PubMed  CAS  Google Scholar 

  12. Wahl RL: Anatomolecular imaging with 2-deoxy-2-[18F]fluoro-D-glucose: Bench to outpatient center. Mol Imaging Biol 5: 49–56, 2003

    Article  PubMed  Google Scholar 

  13. Flier JS, Mueckler MM, Usher P, Lodish HF: Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235: 1492–1495, 1987

    PubMed  CAS  Google Scholar 

  14. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275: 21797–21800, 2000

    Article  PubMed  CAS  Google Scholar 

  15. Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL: Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 40: 556–565, 1999

    PubMed  CAS  Google Scholar 

  16. Brown RS, Wahl RL: Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72: 2979–2985, 1993

    PubMed  CAS  Google Scholar 

  17. Kato H, Takita J, Miyazaki T, Nakajima M, Fukai Y, Masuda N, Fukuchi M, Manda R, Ojima H, Tsukada K, Kuwano H: Glut-1 glucose transporter expression in esophageal squamous cell carcinoma is associated with tumor aggressiveness. Anticancer Res 22: 2635–2639, 2002

    PubMed  CAS  Google Scholar 

  18. Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, Bartenstein P, Wagner W, Whiteside TL: Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97: 1015–1024, 2003

    Article  PubMed  CAS  Google Scholar 

  19. Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT: Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 80: 1046–1051, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL: Glucose catabolism in cancer cells: Amplification of the gene encoding type II hexokinase. Cancer Res 56: 2468–2471, 1996

    PubMed  CAS  Google Scholar 

  21. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH: Mitochondrial bound type II hexokinase: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555: 14–20, 2002

    Article  PubMed  CAS  Google Scholar 

  22. Rempel A, Bannasch P, Mayer D: Differences in expression and intracellular distribution of hexokinase isoenzymes in rat liver cells of different transformation stages. Biochim Biophys Acta 1219: 660–668, 1994

    PubMed  Google Scholar 

  23. Pastorino JG, Hoek JB: Hexokinase II: The integration of energy metabolism and control of apoptosis. Curr Med Chem 10: 1535–1551, 2003

    Article  PubMed  CAS  Google Scholar 

  24. Arora KK, Pedersen PL: Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem 263: 17422–17428, 1988

    PubMed  CAS  Google Scholar 

  25. Bustamante E, Pedersen PL: High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74: 3735–3739, 1977

    Article  PubMed  CAS  Google Scholar 

  26. Rose IA, Warms JV: Stability of hexokinase II in vitro and in ascites tumor cells. Arch Biochem Biophys 213: 625–634, 1982

    Article  PubMed  CAS  Google Scholar 

  27. Pastorino JG, Shulga N, Hoek JB: Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277: 7610–7618, 2002

    Article  PubMed  CAS  Google Scholar 

  28. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N: Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16: 819–830, 2004

    Article  PubMed  CAS  Google Scholar 

  29. Bando H, Atsumi T, Nishio T, Niwa H, Mishima S, Shimizu C, Yoshioka N, Bucala R, Koike T: Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin Cancer Res 11: 5784–5792, 2005

    Article  PubMed  CAS  Google Scholar 

  30. Pugachev A, Ruan S, Carlin S, Larson SM, Campa J, Ling CC, Humm JL: Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys 62: 545–553, 2005

    Article  PubMed  CAS  Google Scholar 

  31. Zhao S, Kuge Y, Mochizuki T, Takahashi T, Nakada K, Sato M, Takei T, Tamaki N: Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor. J Nucl Med 46: 675–682, 2005

    PubMed  CAS  Google Scholar 

  32. Mellanen P, Minn H, Grenman R, Harkonen P: Expression of glucose transporters in head-and-neck tumors. Int J Cancer 56: 622–629, 1994

    PubMed  CAS  Google Scholar 

  33. Burt BM, Humm JL, Kooby DA, Squire OD, Mastorides S, Larson SM, Fong Y: Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 3: 189–195, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Wang GL, Semenza GL: Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270: 1230–1237, 1995

    Article  PubMed  CAS  Google Scholar 

  35. Lu H, Forbes RA, Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277: 23111–23115, 2002

    Article  PubMed  CAS  Google Scholar 

  36. Rajendran JG, Mankoff DA, O'Sullivan F, Peterson LM, Schwartz DL, Conrad EU, Spence AM, Muzi M, Farwell DG, Krohn KA: Hypoxia and glucose metabolism in malignant tumors: Evaluation by [18F]fluoromisonidazole and 18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10: 2245–2252, 2004

    Article  PubMed  CAS  Google Scholar 

  37. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thompson CB: Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892–3899, 2004

    Article  PubMed  CAS  Google Scholar 

  38. Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL, Thompson CB: The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24: 4165–4173, 2005

    Article  PubMed  CAS  Google Scholar 

  39. Yoo TS: Insight into Images, Principles and Practice for Segmentation, Registration, and Image Analysis. A. K. Peters Ltd, Wellesey MA, 2004

    Google Scholar 

  40. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G: Automated multimodality image registration using information theory. Paper presented at: Proceedings of the 14th Internation Conference on Information Processing in Medical Imaging; Computational Imaging and Vision; June, 1995, Boston MA, 1995

  41. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P: Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16: 187–198, 1997

    Article  PubMed  CAS  Google Scholar 

  42. Deurloo EE, Tanis PJ, Gilhuijs KG, Muller SH, Kroger R, Peterse JL, Rutgers EJ, Valdes Olmos R, Schultze Kool LJ: Reduction in the number of sentinel lymph node procedures by preoperative ultrasonography of the axilla in breast cancer. Eur J Cancer 39: 1068–1073, 2003

    Article  PubMed  CAS  Google Scholar 

  43. Tate JJ, Lewis V, Archer T, Guyer PG, Royle GT, Taylor I: Ultrasound detection of axillary lymph node metastases in breast cancer. Eur J Surg Oncol 15: 139–141, 1989

    PubMed  CAS  Google Scholar 

  44. Bruneton JN, Caramella E, Hery M, Aubanel D, Manzino JJ, Picard JL: Axillary lymph node metastases in breast cancer: Preoperative detection with US. Radiology 158: 325–326, 1986

    PubMed  CAS  Google Scholar 

  45. Mustonen P, Farin P, Kosunen O: Ultrasonographic detection of metastatic axillary lymph nodes in breast cancer. Ann Chir Gynaecol 79: 15–18, 1990

    PubMed  CAS  Google Scholar 

  46. de Freitas R, Jr., Costa MV, Schneider SV, Nicolau MA, Marussi E: Accuracy of ultrasound and clinical examination in the diagnosis of axillary lymph node metastases in breast cancer. Eur J Surg Oncol 17: 240–244, 1991

    PubMed  Google Scholar 

  47. Pamilo M, Soiva M, Lavast EM: Real-time ultrasound, axillary mammography, and clinical examination in the detection of axillary lymph node metastases in breast cancer patients. J Ultrasound Med 8: 115–120, 1989

    PubMed  CAS  Google Scholar 

  48. de Kanter AY, van Eijck CH, van Geel AN, Kruijt RH, Henzen SC, Paul MA, Eggermont AM, Wiggers T: Multicentre study of ultrasonographically guided axillary node biopsy in patients with breast cancer. Br J Surg 86: 1459–1462, 1999

    Article  PubMed  Google Scholar 

  49. Sato K, Tamaki K, Tsuda H, Kosuda S, Kusano S, Hiraide H, Mochizuki H: Utility of axillary ultrasound examination to select breast cancer patients suited for optimal sentinel node biopsy. Am J Surg 187: 679–683, 2004

    Article  PubMed  Google Scholar 

  50. Kuenen-Boumeester V, Menke-Pluymers M, de Kanter AY, Obdeijn IM, Urich D, Van Der Kwast TH: Ultrasound-guided fine needle aspiration cytology of axillary lymph nodes in breast cancer patients. A preoperative staging procedure. Eur J Cancer 39: 170–174, 2003

    Article  PubMed  CAS  Google Scholar 

  51. Sapino A, Cassoni P, Zanon E, Fraire F, Croce S, Coluccia C, Donadio M, Bussolati G: Ultrasonographically-guided fine-needle aspiration of axillary lymph nodes: Role in breast cancer management. Br J Cancer 88: 702–706, 2003

    Article  PubMed  CAS  Google Scholar 

  52. Harzmann R, Hirnle P, Geppert M: Retroperitoneal lymph nodal visualization using 30% Guajazulen blue (chromolymphography). Lymphology 22: 147–149, 1989

    PubMed  CAS  Google Scholar 

  53. Hirnle P: Drug depots in lymph nodes: Which carrier is most appropriate? J Microencapsul 8: 103–119, 1991

    PubMed  CAS  Google Scholar 

  54. Hirnle P: Endolymphatic application of bleomycin oil suspension in dog model. Lymphology 18: 56–63, 1985

    PubMed  CAS  Google Scholar 

  55. Hirnle P, Geppert M: Histologic changes in dog lymph nodes after endolymphatic application of bleomycin oil suspension. Lymphology 22: 100–102, 1989

    PubMed  CAS  Google Scholar 

  56. Hirnle P, Ziolko E: Pregnancies after endolymphatic therapy of residual retroperitoneal Hodgkin lymphoma. Lymphology 28: 73–77, 1995

    PubMed  CAS  Google Scholar 

  57. Hirnle P, Harzmann R, Wright JK: Patent blue V encapsulation in liposomes: Potential applicability to endolympatic therapy and preoperative chromolymphography. Lymphology 21: 187–189, 1988

    PubMed  CAS  Google Scholar 

  58. Hirnle E, Hirnle P, Wright JK: Distribution of liposome-incorporated carboxyfluorescein in rabbit eyes. J Microencapsul 8: 391–399, 1991

    PubMed  CAS  Google Scholar 

  59. Hirnle E, Schubert R: Liposomes containing blue dye for preoperative lymph node staining: Distribution and stability in dogs after endolymphatic injection. Int J Pharm 72: 259–269, 1991

    Article  CAS  Google Scholar 

  60. Hirnle P: Histological findings in rabbit lymph nodes after endolymphatic injection of liposomes containing blue dye. J Pharm Pharmacol 43: 217–218, 1991

    PubMed  CAS  Google Scholar 

  61. Hirnle P: Chromolymphography, lymph node surgery and detection of lymph node metastases: Current state and future. Lymphology 27: 111–113, 1994

    PubMed  CAS  Google Scholar 

  62. Hirnle P: Liposomes for drug targeting in the lymphatic system. Hybridoma 16: 127–132, 1997

    Article  PubMed  CAS  Google Scholar 

  63. Dieter M, Schubert R, Hirnle P: Blue liposomes for identification of the sentinel lymph nodes in pigs. Lymphology 36: 39–47, 2003

    PubMed  CAS  Google Scholar 

  64. Pump B, Hirnle P: Preoperative lymph-node staining with liposomes containing patent blue violet. A clinical case report. J Pharm Pharmacol 48: 699–701, 1996

    PubMed  CAS  Google Scholar 

  65. Nieweg OE, Estourgie SH, Olmos RAV: Lymphtic mapping and sentinel node biopsy. In: Ell PJ, Gambhir SS (eds.) Nuclear Medicine in Clinical Diagnosis and Treatment, vol 1. Churchill Livingstone, Edinburgh, 219–260, 2004

    Google Scholar 

  66. Stokes RW, Norris-Jones R, Brooks DE, Beveridge TJ, Doxsee D, Thorson LM: The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect Immun 72: 5676–5686, 2004

    Article  PubMed  CAS  Google Scholar 

  67. Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, Muller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper DL, Golenbock DT: Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 174: 6449–6455, 2005

    PubMed  CAS  Google Scholar 

  68. Moreillon P, Majcherczyk PA: Proinflammatory activity of cell-wall constituents from gram-positive bacteria. Scand J Infect Dis 35: 632–641, 2003

    Article  PubMed  CAS  Google Scholar 

  69. Randolph GJ, Angeli V, Swartz MA: Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5: 617–628, 2005

    Article  PubMed  CAS  Google Scholar 

  70. Swartz MA, Skobe M: Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech 55: 92–99, 2001

    Article  PubMed  CAS  Google Scholar 

  71. Frangioni JV: In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7: 626–634, 2003

    Article  PubMed  CAS  Google Scholar 

  72. Vera DR, Wallace AM, Hoh CK, Mattrey RF: A synthetic macromolecule for sentinel node detection: [99m]DTPA-mannosyl-dextran. J Nucl Med 42: 951–959, 2001

    PubMed  CAS  Google Scholar 

  73. Torabi M, Aquino SL, Harisinghani MG: Current concepts in lymph node imaging. J Nucl Med 45: 1509–1518, 2004

    PubMed  Google Scholar 

  74. Sherman AI, Ter-Pogossian M: Lymph-node concentration of radioactive colloidal gold following interstitial injection. Cancer 6: 1238–1240, 1953

    PubMed  CAS  Google Scholar 

  75. Sage HH, Kizilay D, Miyazaki M, Shapiro G, Sinha B: Lymph node scintigrams. Am J Roentgenol Radium Ther Nucl Med 84: 666–672, 1960

    PubMed  CAS  Google Scholar 

  76. Ikomi F, Hanna G, Schmid-Schonbein GW: Mechanism of colloidal particle uptake into thelylmphatic system: Basic study with percutaneous lymphography. Radiology 196: 197–113, 1995

    Google Scholar 

  77. Tafra L, Chua AN, Ng PC, Aycock D, Swanson M, Lannin D: Filtered versus unfiltered technetium sulfur colloid in lymphatic mapping: A significant variable in a pig model. Ann Surg Oncol 6: 83–87, 1999

    Article  PubMed  CAS  Google Scholar 

  78. Glass EC, Essner R, Morton DL: Kinetics of three lymphoscintigraphic agents in patients with cutaneous melanoma. J Nucl Med 39: 1185–1190, 1998

    PubMed  CAS  Google Scholar 

  79. Bergqvist L, Strand S-E, Persson BRR: Particle sizing and biokinetics of interstitial lymphoscinitgraphic agents. Semin Nucl Med 13: 9–19, 1983

    PubMed  CAS  Google Scholar 

  80. Krynyckyi BR, Zhang ZY, Kim CK, Lipszyc H, Mosci K, Machac J: Effect of high specific-activity sulfur colloid preparations on sentinel node count rates. Clin Nucl Med 27: 92–95, 2002

    Article  PubMed  Google Scholar 

  81. Gray RJ, Pockaj BA, Roarke MC: Injection of (99 m)Tc-labeled sulfur colloid the day before operation for breast cancer sentinel lymph node mapping is as successful as injection the day of operation. Am J Surg 188: 685–689, 2004

    Article  PubMed  Google Scholar 

  82. Babiera GV, Delpassand ES, Breslin TM, Ross MI, Ames FC, Singletary SE, Kuerer HM, Feig BW, Meric-Bernstam F, Hunt KK: Lymphatic drainage patterns on early versus delayed breast lymphoscintigraphy performed after injection of filtered Tc-99m sulfur colloid in breast cancer patients undergoing sentinel lymph node biopsy. Clin Nucl Med 30: 11–15, 2005

    Article  PubMed  Google Scholar 

  83. Aarsvold JN, Alazraki NP: Update on detection of sentinel lymph nodes in patients with breast cancer. Semin Nucl Med 35: 116–128, 2005

    Article  PubMed  Google Scholar 

  84. Vuylsteke RJ, Borgstein PJ, van Leeuwen PA, Gietema HA, Molenkamp BG, Muller MG, van Diest PJ, van der Sijp JR, Meijer S: Sentinel lymph node tumor load: An independent predictor of additional lymph node involvement and survival in melanoma. Ann Surg Oncol 12: 440–448, 2005

    Article  PubMed  Google Scholar 

  85. Ganaraj A, Kuhn JA, Jones RC, Grant MD, Andrews VR, Knox SM, Netto GJ, Altrabulsi B, Livingston SA, McCarty TM: Predictors for nonsentinel node involvement in breast cancer patients with micrometastases in the sentinel lymph node. Proc (Bayl Univ Med Cent) 16: 3–6, 2003

    Google Scholar 

  86. Kelemen PR, Lowe V, Phillips N: Positron emission tomography and sentinel lymph node dissection in breast cancer. Clin Breast Cancer 3: 73–77, 2002

    Article  PubMed  Google Scholar 

  87. Waddington WA, Keshtgar, MRS, Taylor I, Lakhani SR, Short MD, Ell PJ: Radiation safety of the sentinel lymph node technique in breast cancer. Eur J Nucl Med 27: 377–391, 2000

    Article  PubMed  CAS  Google Scholar 

  88. Glass EC, Basinski JE, Krasne DL, Giuliano AE: Radiation safety consideration for sentinel node techniques [editorial]. Ann Surg Oncol 6: 10–11, 1999

    Article  PubMed  CAS  Google Scholar 

  89. Glass EC, Essner R, Giuliano AE: Sentinel node localization in breast cancer. Semin Nucl Med 29: 57–68, 1999

    Article  PubMed  CAS  Google Scholar 

  90. Wanebo CK, Johnson KG, Sato K, Thorslund TW: Breast cancer after the exposure to the atomic bombings of Hiroshima and Nagasaki. N Engl J Med 279: 667–671, 1968

    Article  PubMed  CAS  Google Scholar 

  91. Kohn HI, Fry RJM: Radiation carcinogenesis. N Engl J Med 310: 504–511, 1984

    Article  PubMed  CAS  Google Scholar 

  92. Huston TL, Simmons RM: Locally recurrent breast cancer after conservation therapy. Am J Surg 189: 229–235, 2005

    Article  PubMed  Google Scholar 

  93. Cody HS, Borgen PI: State-of-the-art approaches to sentinel node biopsy for breast cancer: Study design, patient selection, technique, and quality control at Memorial Sloan-Kettering Cancer Center. Surg Oncol 8: 85–91, 1999

    Article  PubMed  Google Scholar 

  94. Stratmann SL, McCarty TM, Kuhn JA: Radiation safety with breast sentinel node biopsy. Am J Surg 178: 454–457, 1999

    Article  PubMed  CAS  Google Scholar 

  95. Miner TJ, Shriver CD, Flicek PR, Miner FC, Jaques DP, Maniscalco-Theberge ME, Krag DN: Guidelines for the safe use of radioactive materials during localization and resection of the sentinel lymph node. Ann Surg Oncol 6: 75–82, 1999

    Article  PubMed  CAS  Google Scholar 

  96. Fitzgibbons PL, LiVolsi VA: Recommendations for handling radioactive specimens obtained by sentinel lymphadenectomy. Surgical pathology committee of the college of American pathologists, and the association of directors of anatomic and surgical pathology. Am J Surg Pathol 24: 1549–1551, 2000

    PubMed  CAS  Google Scholar 

  97. Harper PV, Lathrop KA, Richards P: Tc-99m as a radiocoloid. J Nucl Med 5: 382–391, 1964

    Google Scholar 

  98. Atkins HL, Richards P, Schiffer L: Scanning of liver, spleen, and bone marrow with colloidal 99m-technetium. Nuclear Applications 2: 27–31, 1966

    CAS  Google Scholar 

  99. Larson SM, Nelp WB: Radiopharmacology of a simplified technetium-99m-colloid preparation for photoscanning. J Nucl Med 7: 817–826, 1966

    PubMed  CAS  Google Scholar 

  100. Chaudhuri TK, Evans TC, Chaudhuri TK: Autoradiographic studies of distribution in the liver Au-198 and Tc-99m sulfur colloids. Radiology 109: 633–637, 1973

    CAS  Google Scholar 

  101. Brucer M: Liver Scans, Clearances, and Perfusions. The Development of Nuclear Hepatology. Krieger Publishing, Huntington, NY, 1977

    Google Scholar 

  102. Technetium Tc 99m Sulfur Colloid Injection. The United States Pharmacopeia. The United States Pharmacopeial Convention, Rockville MD, 1602–1603, 1999

    Google Scholar 

  103. Vera DR, Wisner ER, Stadalnik RC: Sentinel node imaging via a nonparticulate receptor-binding radiotracer. J Nucl Med 38: 530–535, 1997

    PubMed  CAS  Google Scholar 

  104. Steer CJ: Receptor-mediated endocytosis: Mechanisms, biologic function, and molecular propeties. In: Zakim D, Boyer TD (eds.) Hepatology. A Textbook of Liver Disease, 3rd ed. W. B. Saunders, Philadelphia, 149–214, 1996

    Google Scholar 

  105. Hoh CK, Wallace AM, Vera DR: Preclinical studies of [99m]DPTA-mannosyl-dextran. Nucl Med Biol 30: 457–464, 2003

    Article  PubMed  CAS  Google Scholar 

  106. Méndez J, Wallace AM, Hoh CK, Vera DR: Detection of gastric and colonic sentinel nodes via endoscopic administration of Lymphoseek in pigs. J Nucl Med 44: 1677–1681, 2003

    PubMed  Google Scholar 

  107. Ellner SJ, Méndez J, Vera DR, Hoh CK, Ashburn WL, Wallace AM: Sentinel lymph node mapping of the colon and stomach using lymphoseek in a pig model. Ann Surg Oncol 11: 674–681, 2004

    Article  PubMed  Google Scholar 

  108. Wallace AM, Ellner SJ, Méndez J, Hoh CK, Salem CE, Bosch CM, Orahood RC, Vera DR: Minimally invasive sentinel lymph node mapping of the pig colon with lymphoseek. Surgery 139: 217–223, 2006

    Article  PubMed  Google Scholar 

  109. Salem CE, Wallace AM, Hoh CK, Vera DR: A preclinical study of prostate sentinel node mapping with Lymphoseek. J Urol 175: 744–748, 2006

    Article  PubMed  Google Scholar 

  110. Wallace AM, Hoh CK, Vera DR, Darrah D, Schulteis G: Lymphoseek: A molecular radiopharmceutical for sentinel node detection. Ann Surg Oncol 10: 531–538, 2003

    Article  PubMed  Google Scholar 

  111. Ellner SJ, Hoh CK, Vera DR, Darrah DD, Schulteis G, Wallace AM: Dose-dependent biodistribution of [99mTc]DTPA-mannosyl-dextran for breast cancer sentinel node mapping. Nucl Med Biol 30: 805–810, 2003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Vera.

Additional information

Presented as Session II of the First International Symposium on Cancer Metastasis and the Lymphovascular System. April 28–30, 2005, San Francisco, CA; Chaired by by David R. Vera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöder, H., Glass, E.C., Pecking, A.P. et al. Molecular targeting of the lymphovascular system for imaging and therapy. Cancer Metastasis Rev 25, 185–201 (2006). https://doi.org/10.1007/s10555-006-8498-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-8498-0

Keywords

Navigation