Skip to main content

Advertisement

Log in

Gene therapy for head and neck cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The prognosis of patients with advanced head and neck cancer has not changed significantly in the last twenty years, despite concerted efforts to optimize treatment using conventional modalities such as surgery, radiotherapy and chemotherapy. Novel therapeutic approaches based on our increasing understanding of the molecular changes that underlie the development of cancer have the potential to alter this situation. Gene therapy involves the delivery of genetic sequences in to tumour or normal cells for a therapeutic purpose. A number of viral and non-viral vectors have been developed that have the ability to deliver therapeutic genes specifically to tumours. These therapeutic genes can exert their effects by correcting existing genetic abnormalities, by killing cells directly or indirectly through recruitment of the immune system. In this review, the various gene therapy strategies that are under development are presented with particular reference to the treatment of head and neck cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munro AJ: Head and Neck Cancer. In: Price P, Sikora K (eds) Treatment of Cancer, 3rd Edition. Chapman and Hall, UK London

  2. Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, Mariotto A, Fay MP, Feuer EJ, Edwards BK: SEER Cancer Statistics Review, 1975–2000. Bethesda, MD, National Cancer Institute, 2003

  3. Vile RG, Russell SJ, Lemoine NR: Cancer gene therapy: hard lessons and new courses. Gene Ther 7: 2–8, 2000

    Article  CAS  PubMed  Google Scholar 

  4. Verma IM, Somia N: Gene therapy—promises, problems and prospects. Nature 389: 239–42, 1997

    Google Scholar 

  5. Peng KW, Vile RG: Vector development for cancer gene therapy. Tum Targeting 4: 3–11, 1999

    Google Scholar 

  6. Curiel DT: The development of conditionally replicative adenoviruses for cancer therapy. Clin Cancer Res 6: 3395–3399, 2000

    Google Scholar 

  7. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT: Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 70: 6839–6846, 1996

    Google Scholar 

  8. Kasono K, Blackwell JL, Douglas JT, Dmitriev I, Strong TV, Reynolds P, Kropf DA, Carroll WR, Peters GE, Bucy RP, Coriel DT, Krasnykh: Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res 5: 2571–2579, 1999

    Google Scholar 

  9. Cosset FL, Russell SJ: Targeting retrovirus entry. Gene Ther 3: 946–956, 1996

    Google Scholar 

  10. Zhang WW: Adenoviral vectors: Development and application. Exp Opin Invest Drugs 6: 1419–1456, 1997

    Google Scholar 

  11. Zhang WW: Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 6: 113–138, 1999

    Google Scholar 

  12. Curiel DT: Strategies to adapt adenoviral vectors for targeted delivery. Ann NY Acad Sci 886: 158–171, 1999

    Google Scholar 

  13. Jee YS, Lee SG, Lee JC, Kim MJ, Lee JJ, Kim DY, Park SW, Sung MW, Heo DS: Reduced expression of coxsackievirus and adenovirus receptor (CAR) in tumour tissue compared to normal epithelium in head and neck squamous cell carcinoma patients. Anticancer Res 22: 2629–2634, 2002

    Google Scholar 

  14. Kochanek S: High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum Gene Ther 10: 2451–2459, 1999

    Google Scholar 

  15. Miller AD: Retroviral vectors. Curr Top Microbiol Immunol 158: 1–24, 1992

    Google Scholar 

  16. Vile RG, Russell SJ: Retroviruses as vectors. Br Med Bull 51: 12–30, 1995

    Google Scholar 

  17. McCormack MP, Forster A, Drynan L, Pannell R, Rabbitts TH: The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol Cell Biol 23: 9003–9013, 2003

    Google Scholar 

  18. Flotte TR, Carter BJ: Adeno-associated viral vectors. In: Meager A (ed) Gene Therapy Technologies, Applications and Regulations. John Wiley & Sons Ltd, Chichester, 1999

    Google Scholar 

  19. Fink DJ, Glorioso JC: Engineering herpes simplex virus vectors for gene transfer to neurons. Nat Med 3: 357–359, 1997

    Google Scholar 

  20. Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO: HSV-1 amplicon vector–simplicity and versatility. Mol Ther 2: 9–15, 2000

    Google Scholar 

  21. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR: Prostate attenuated replication competent adenovirus (ARCA) CN706: A selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 57: 2559–2563, 1997

    CAS  PubMed  Google Scholar 

  22. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR: The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumour xenografts. Cancer Res 59: 4200–4203, 1999

    Google Scholar 

  23. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL, Manns M, Kubicka S, Kuhnel F: A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 63: 3181–3188, 2003

    CAS  PubMed  Google Scholar 

  24. Kaweshima T, S Kagawa, N Kobayashi, Y Shirakiya, T Umeoka, F Teraishi, M Taki S Kyo, N Tanaka, Fujiwara T. Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 10: 285–292, 2004

    CAS  PubMed  Google Scholar 

  25. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Sampson-Johannes A, Fattaey A, McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376, 1996

    Article  CAS  PubMed  Google Scholar 

  26. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B gene-attenuated adenovirus, causes tumour-specific cytolysis and antitumoural efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3: 639–645, 1997

    Google Scholar 

  27. Heise CC, Williams AM, Xue S, Propst M, Kirn DH: Intravenous administration of ONYX-015, a selectively replicating adenovirus, induces antitumoral efficacy. Cancer Res 59: 2623–2628, 1999

    Google Scholar 

  28. You L, Yang CT, Jablons DM: ONYX-015 works synergistically with chemotherapy in lung cancer cell lines and primary cultures freshly made from lung cancer patients. Cancer Res 60: 1009–1013, 2000

    Google Scholar 

  29. Rogulski KR, Freytag SO, Zhang K, Gilbert JD, Paielli DL, Kim JH, Heise CC, Kirn DH: In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res 60: 1193–1196, 2000

    Google Scholar 

  30. Kirn D, Hermiston T, McCormick F: ONYX-015: clinical data are encouraging. Nat Med 4: 1341–1342, 1998

    Google Scholar 

  31. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T, Landers S, Maples P, Romel L, Randlev B, Reid T, Kaye S, Kirn D: Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: A phase II trial. Cancer Res 60: 6359–6366, 2000

    Google Scholar 

  32. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L, Gore M, Ironside J, MacDougall RH, Heise C, Randlev B, Gillenwater AM, Bruso P, Kaye SB, Hong WK, Kirn DH: A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 6: 879–885, 2000

    Article  CAS  PubMed  Google Scholar 

  33. Rudin CM, Cohen EE, Papadimitrakopoulou VA, Silverman S Jr, Recant W, El-Naggar AK, Stenson K, Lippman SM, Hong WK, Vokes EE: An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J Clin Oncol 21: 4546–4552, 2003

    Google Scholar 

  34. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM: Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252: 854–856, 1991

    Google Scholar 

  35. Boviatsis EJ, Scharf JM, Chase M, Harrington K, Kowall NW, Breakefield XO, Chiocca EA: Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Ther 1: 323–331, 1994

    Google Scholar 

  36. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, Petty R, MacLean A, Harland J, McKie E, Mabbs R, Brown M: Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7: 859–866, 2000

    Google Scholar 

  37. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL: Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1: 938–943, 1995

    Google Scholar 

  38. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P, McGrath Y, Thomas SK, Thornton M, Bullock P, Love CA, Coffin RS: ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther 10: 292–303, 2003

    Google Scholar 

  39. Coffey MC, Strong JE, Forsyth PA, Lee PW: Reovirus therapy of tumours with activated Ras pathway. Science 282: 1332–1334, 1998

    Google Scholar 

  40. Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW: The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17: 3351–3362, 1998

    Google Scholar 

  41. Hirasawa K, Nishikawa SG, Norman KL, Coffey MC, Thompson BG, Yoon CS, Waisman DM, Lee PW: Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res 63: 348–353, 2003

    Google Scholar 

  42. Schirrmacher V, Haas C, Bonifer R, Ahlert T, Gerhards R, Ertel C: Human tumour cell modification by virus infection: An efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther 6: 63–73, 1999

    Article  CAS  PubMed  Google Scholar 

  43. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC: Exploiting tumour-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6: 821–825, 2000

    Google Scholar 

  44. Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S, Marius R, Reynard J, Poliquin L, Atkins H, Brown EG, Durbin RK, Durbin JE, Hiscott J, Bell JC: VSV strains with defects in their ability to shutdown innate immunity are potent systemic anticancer agents. Cancer Cell 4: 263–275, 2003

    Google Scholar 

  45. Pecora AL, Rizvi N, Cohen GI, Meropol NJ, Sterman D, Marshall JL, Goldberg S, Gross P, O’Neil JD, Groene WS, Roberts S, Rabin H, Bamat MK, Lorence RM: Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J Clin Oncol 20: 2251–2266, 2002

    Google Scholar 

  46. Li S, Huang L: In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther 4: 891–900, 1997

    Google Scholar 

  47. Clark PR, Hersh EM: Cationic lipid-mediated gene transfer: Current concepts. Curr Opin Molec Ther 1: 158–176, 1999

    Google Scholar 

  48. Rini BI, Selk LM, Vogelzang NJ: Phase I study of direct intralesional gene transfer of HLA-B7 into metastatic renal carcinoma lesions. Clin Cancer Res 5: 2766–2772, 1999

    Google Scholar 

  49. Galanis E, Hersh EM, Stopeck AT, Gonzalez R, Burch P, Spier C, Akporiaye ET, Rinehart JJ, Edmonson J, Sobol RE, Forscher C, Sondak VK, Lewis BD, Unger EC, O’Driscoll M, Selk L, Rubin J: Immunotherapy of advanced malignancy by direct gene transfer of an interleukin-2 DNA/DMRIE/DOPE lipid complex: Phase I/II experience. J Clin Oncol 17: 3313–3323, 1999

    Google Scholar 

  50. Harrington KJ, Bateman AR, Melcher AA, Ahmed A, Vile RG: Cancer gene therapy: Part 1. Vector development and regulation of gene expression. Clin. Oncol. (R. Coll. Radiol.) 14: 3–16, 2002

    Google Scholar 

  51. Harrington KJ, Melcher AA, Bateman AR, Ahmed A, Vile RG: Cancer gene therapy: Part 2. Candidate transgenes and their clinical development. Clin. Oncol. (R. Coll. Radiol.) 14: 148–169, 2002

    Google Scholar 

  52. Lane DP: Cancer. p53, guardian of the genome. Nature 358: 15–16, 1992

    Article  CAS  PubMed  Google Scholar 

  53. Schwartz D, Rotter V: p53-dependent cell cycle control: Response to genotoxic stress. Semin Cancer Biol 8: 325–336, 1998

    Google Scholar 

  54. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–1584, 1994

    Google Scholar 

  55. Brachman DG, Graves D, Vokes E, Beckett M, Haraf D, Montag A, Dunphy E, Mick R, Yandell D, Weichselbaum RR: Occurrence of p53 gene deletions and human papilloma virus infection in human head and neck cancer. Cancer Res 52: 4832–4836, 1992

    Google Scholar 

  56. Koch WM, Brennan JA, Zahurak M, Goodman SN, Westra WH, Schwab D, Yoo GH, Lee DJ, Forastiere AA, Sidransky D: p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst 88: 1580–1586, 1996

    Google Scholar 

  57. Liu TJ, Zhang WW, Taylor DL, Roth JA, Goepfert H, Clayman GL: Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 54: 3662–3667, 1994

    CAS  PubMed  Google Scholar 

  58. Clayman GL, el-Naggar AK, Roth JA, Zhang WW, Goepfert H, Taylor DL, Liu TJ: In vivo molecular therapy with p53 adenovirus for microscopic residual head and neck squamous carcinoma. Cancer Res 55: 1–6, 1995

    Google Scholar 

  59. Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA: Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst 86: 1458–1462, 1994

    Google Scholar 

  60. Zou Y, Zong G, Ling YH, Hao MM, Lozano G, Hong WK, Perez-Soler R: Effective treatment of early endobronchial cancer with regional administration of liposome-p53 complexes. J Natl Cancer Inst 90: 1130–1137, 1998

    Google Scholar 

  61. Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE Jr, Ryan P, Chiang Y, Chang EH: p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 14: 1735–1746, 1997

    Google Scholar 

  62. Xu L, Pirollo KF, Tang WH, Rait A, Chang EH: Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther 10: 2941–2952, 1999

    Google Scholar 

  63. Ogawa N, Fujiwara T, Kagawa S, Nishizaki M, Morimoto Y, Tanida T, Hizuta A, Yasuda T, Roth JA, Tanaka N: Novel combination therapy for human colon cancer with adenovirus-mediated wild-type p53 gene transfer and DNA-damaging chemotherapeutic agent. Int J Cancer 73: 367–370, 1997

    Google Scholar 

  64. Clayman GI, el-Nager AK, Lippman SM, Henderson YC, Fredrick M, Merritt JA, Zumstein LA, Timmons TM, Liu TJ, Ginsberg L, Roth JA, Hong WK, Bruso P, Goepfort H: Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 16: 2221–2232, 1998

    Google Scholar 

  65. Nurse P: Regulation of the eukaryotic cell cycle. Eur J Cancer 33: 1002–1004, 1997

    Google Scholar 

  66. Vidal A, Koff A: Cell-cycle inhibitors: Three families united by a common cause. Gene 247: 1–15, 2000

    Article  CAS  PubMed  Google Scholar 

  67. Sherr CJ: The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res 60: 3689–3695, 2000

    CAS  PubMed  Google Scholar 

  68. Tsihlias J, Kapusta L, Slingerland J: The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annu Rev Med 50: 401–423, 1999

    Google Scholar 

  69. Cardinali M, Jakus J, Shah S, Ensley JF, Robbins KC, Yeudall WA: p21(WAF1/Cip1) retards the growth of human squamous cell carcinomas in vivo. Oral Oncol 34: 211–218, 1998

    Google Scholar 

  70. Rocco JW, Li D, Liggett WH Jr, Duan L, Saunders JK Jr, Sidransky D, O’Malley BW Jr: p16INK4A adenovirus-mediated gene therapy for human head and neck squamous cell cancer. Clin Cancer Res 4: 1697–1704, 1998

    Google Scholar 

  71. Teich NM: Oncogenes and Cancer. In: Franks LM, Teich NM (eds) Introduction to the Cellular and Molecular Biology of Cancer, 2nd Edition. Oxford Medical Publications, Oxford, 1991, pp 230–268

    Google Scholar 

  72. Jen KY, Gewirtz AM: Suppression of gene expression by targeted disruption of messenger RNA: Available options and current strategies. Stem Cells 18: 307–319, 2000

    Google Scholar 

  73. Camerini-Otero RD, Hsieh P: Parallel DNA triplexes, homologous recombination, and other homology-dependent DNA interactions. Cell 73: 217–223, 1993

    Google Scholar 

  74. Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, Kaneda Y, Ogihara T, Dzau VJ: A gene therapy strategy using a transcription factor decoy of the E2F binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci USA 92: 5855–5859, 1995

    Google Scholar 

  75. Geiger T, Muller M, Monia BP, Fabbro D: Antitumor activity of a C-raf antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted subcutaneously into nude mice. Clin Cancer Res 3: 1179–1185, 1997

    Google Scholar 

  76. O’Dwyer PJ, Stevenson JP, Gallagher M, Cassella A, Vasilevskaya I, Monia BP, Holmlund J, Dorr FA, Yao KS: C-raf-1 depletion and tumor responses in patients treated with the c-raf-1 antisense oligodeoxynucleotide ISIS 5132 (CGP 69846A). Clin Cancer Res 5: 3977–3982, 1999

    Google Scholar 

  77. Yuen AR, Halsey J, Fisher GA, Holmlund JT, Geary RS, Kwoh TJ, Dorr A, Sikic BI: Phase I study of an antisense oligonucleotide to protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 5: 3357–3363, 1999

    Google Scholar 

  78. Chen HX, Marshall JL, Ness E, Martin RR, Dvorchik B, Rizvi N, Marquis J, McKinlay M, Dahut W, Hawkins MJ: A safety and pharmacokinetic study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusions in patients with refractory solid tumors. Clin Cancer Res 6: 1259–1266, 2000

    Google Scholar 

  79. Dorai T, Perlman H, Walsh K, Shabsigh A, Goluboff ET, Olsson CA, Buttyan R: A recombinant defective adenoviral agent expressing anti-bcl-2 ribozyme promotes apoptosis of bcl-2-expressing human prostate cancer cells. Int J Cancer 82: 846–852, 1999

    Google Scholar 

  80. Scherr M, Maurer AB, Klein S, Ganser A, Engels JW, Grez M: Effective reversal of a transformed phenotype by retrovirus-mediated transfer of a ribozyme directed against mutant N-ras. Gene Ther 5: 1227–1234, 1998

    Google Scholar 

  81. Czubayko F, Downing SG, Hsieh SS, Goldstein DJ, Lu PY, Trapnell BC, Wellstein A: Adenovirus-mediated transduction of ribozymes abrogates HER-2/neu and pleiotrophin expression and inhibits tumor cell proliferation. Gene Ther 4: 943–949, 1997

    Article  Google Scholar 

  82. Wang CH, Tsai LJ, Tsao YP, Hsieh JT, Chien WW, Liao CL, Wang HW, Liu HS, Chen SL: Recombinant adenovirus encoding H-ras ribozyme induces apoptosis in laryngeal cancer cells through caspase- and mitochondria-dependent pathways. Biochem Biophys Res Commun 298: 805–814, 2002

    Google Scholar 

  83. Gibson SA, Pellenz C, Hutchison RE, Davey FR, Shillitoe EJ: Induction of apoptosis in oral cancer cells by an anti-bcl-2 ribozyme delivered by an adenoviral vector. Clin Cancer Res 6: 213–222, 2000

    Google Scholar 

  84. Connors TA: The choice of prodrugs for gene directed enzyme prodrug therapy of cancer. Gene Ther 2: 702, 1995

    Google Scholar 

  85. Greco O, Dachs GU: Gene directed enzyme/prodrug therapy of cancer: Historical appraisal and future prospectives. J Cell Physiol 187: 22–36, 2001

    Google Scholar 

  86. Niculescu-Duvaz D, Niculescu-Duvaz I, Springer CJ: Design of prodrugs for suicide gene therapy. Methods Mol Med 90: 161–202, 2004

    Google Scholar 

  87. Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E, Long Z, Chiang Y, McGarrity GJ, Muul LM, Katz D, Blaese RM, Oldfield EH: Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 3: 1354–1361, 1997

    Google Scholar 

  88. Sterman DH, Treat J, Litzky LA, Amin KM, Coonrod L, Molnar-Kimber K, Recio A, Knox L, Wilson JM, Albelda SM, Kaiser LR: Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: Results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther 9: 1083–1092, 1998

    Google Scholar 

  89. Klatzmann D, Valery CA, Bensimon G, Marro B, Boyer O, Mokhtari K, Diquet B, Salzmann JL, Philippon J: A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide’’ gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther 9: 2595–2604, 1998

    Google Scholar 

  90. Klatzmann D, Cherin P, Bensimon G, Boyer O, Coutellier A, Charlotte F, Boccaccio C, Salzmann JL, Herson S: A phase I/II dose-escalation study of herpes simplex virus type 1 thymidine kinase “suicide’’ gene therapy for metastatic melanoma. Study Group on Gene Therapy of Metastatic Melanoma. Hum Gene Ther 9: 2585–2594, 1998

    Google Scholar 

  91. Herman JR, Adler HL, Aguilar-Cordova E, Rojas-Martinez A, Woo S, Timme TL, Wheeler TM, Thompson TC, Scardino PT: In situ gene therapy for adenocarcinoma of the prostate: A phase I clinical trial. Hum Gene Ther 10: 1239–1249, 1999

    Google Scholar 

  92. Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z, Sorensen AG, Barbier N: A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum Gene Ther 10: 2325–2335, 1999

    Google Scholar 

  93. Pandha HS, Martin LA, Rigg A, Hurst HC, Stamp GW, Sikora K, Lemoine NR: Genetic prodrug activation therapy for breast cancer: A phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol 17: 2180–2189, 1999

    Google Scholar 

  94. Evan G, Littlewood T: A matter of life and cell death. Science 281: 1317–1322, 1998

    Article  PubMed  Google Scholar 

  95. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100: 57–70, 2000

    Article  CAS  PubMed  Google Scholar 

  96. Sato T, Yamauchi N, Sasaki H, Takahashi M, Okamoto T, Sakamaki S, Watanabe N, Niitsu Y: An apoptosis-inducing gene therapy for pancreatic cancer with a combination of 55-kDa tumor necrosis factor (TNF) receptor gene transfection and mutein TNF administration. Cancer Res 58: 1677–1683, 1998

    Google Scholar 

  97. Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL: Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. J Immunol 165: 2886–2894, 2000

    Google Scholar 

  98. Arai H, Gordon D, Nabel EG, Nabel GJ: Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci USA 94: 13862–13867, 1997

    Google Scholar 

  99. Shinoura N, Saito K, Yoshida Y, Hashimoto M, Asai A, Kirino T, Hamada H: Adenovirus-mediated transfer of bax with caspase-8 controlled by myelin basic protein promoter exerts an enhanced cytotoxic effect in gliomas. Cancer Gene Ther 7: 739–748, 2000

    Google Scholar 

  100. Pataer A, Fang B, Yu R, Kagawa S, Hunt KK, McDonnell TJ, Roth JA, Swisher SG: Adenoviral Bak overexpression mediates caspase-dependent tumor killing. Cancer Res 60: 788–792, 2000

    Google Scholar 

  101. Marcelli M, Cunningham GR, Walkup M, He Z, Sturgis L, Kagan C, Mannucci R, Nicoletti I, Teng B, Denner L: Signaling pathway activated during apoptosis of the prostate cancer cell line LNCaP: Overexpression of caspase-7 as a new gene therapy strategy for prostate cancer. Cancer Res 59: 382–390, 1999

    Google Scholar 

  102. Yamabe K, Shimizu S, Ito T, Yoshioka Y, Nomura M, Narita M, Saito I, Kanegae Y, Matsuda H: Cancer gene therapy using a pro-apoptotic gene, caspase-3. Gene Ther 6: 1952–1959, 1999

    Google Scholar 

  103. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996

    Article  CAS  PubMed  Google Scholar 

  104. Harris SR, Thorgeirsson UP: Tumor angiogenesis: Biology and therapeutic prospects. In Vivo 12: 563–570, 1998

    Google Scholar 

  105. Jaggar RT, Chan HY, Harris AL, Bicknell R: Endothelial cell-specific expression of tumor necrosis factor-alpha from the KDR or E-selectin promoters following retroviral delivery. Hum Gene Ther 8: 2239–2247, 1997

    Google Scholar 

  106. Walton T, Wang JL, Ribas A, Barsky SH, Economou J, Nguyen M: Endothelium-specific expression of an E-selectin promoter recombinant adenoviral vector. Anticancer Res 18: 1357–1360, 1998

    Google Scholar 

  107. Modlich U, Pugh CW, Bicknell R: Increasing endothelial cell specific expression by the use of heterologous hypoxic and cytokine-inducible enhancers. Gene Ther 7: 896–902, 2000

    Google Scholar 

  108. Mavria G, Jager U, Porter CD: Generation of a high titre retroviral vector for endothelial cell-specific gene expression in vivo. Gene Ther 7; 368–376, 2000

    Google Scholar 

  109. O’Reilly MS, Holmgren L, Chen C, Folkman J: Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2: 689–692, 1996

    PubMed  Google Scholar 

  110. O’Reilly MS, T Boehm, Y Shing,N Fukai,G Vasios, WS Lane, E Flyn, JR Birkhead, BR Olsen, Folkoman J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285, 1997

    Article  Google Scholar 

  111. Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SL: Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proc Natl Acad Sci USA 97: 4802–4807, 2000

    Google Scholar 

  112. Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT: Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 95: 8795–8800, 1998

    Google Scholar 

  113. Spitzweg C, Harrington KJ, Pinke LA, Vile RG, Morris JC: The sodium iodide symporter and its potential role in cancer therapy. J Clin Endocrin Metab 86: 3327–3335, 2001

    Google Scholar 

  114. Spitzweg C, Zhang S, Bergert ER, Castro MR, McIver B, Heufelder AE, Tindall DJ, Young CY, Morris JC: Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 59: 2136–2141, 1999

    CAS  PubMed  Google Scholar 

  115. Spitzweg C, O’Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC: Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 60: 6526–6530, 2000

    Google Scholar 

  116. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S, Schlumberger M, Perricaudet M: Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 60: 3484–3492, 2000

    CAS  PubMed  Google Scholar 

  117. Gaut AW, Niu G, Krager KJ, Graham MM, Trask DK, Domann FE: Genetically targeted radiotherapy of head and neck squamous cell carcinoma using the sodium-iodide symporter (NIS). Head Neck 26: 265–271, 2004

    Google Scholar 

  118. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G: Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 13: 1723–1735, 2002

    Article  CAS  PubMed  Google Scholar 

  119. Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G: Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 9: 436–942, 2004

    Google Scholar 

  120. Tepper RI, Mule JJ: Experimental and clinical studies of cytokine gene-modified tumor cells. Hum Gene Ther 5: 153–164, 1994

    Google Scholar 

  121. Dohring C, Angman L, Spagnoli G, Lanzavecchia A: T-helper- and accessory-cell-independent cytotoxic responses to human tumor cells transfected with a B7 retroviral vector. Int J Cancer 57: 754–759, 1994

    Google Scholar 

  122. Dalgleish A: The case for therapeutic vaccines. Melanoma Res 6: 5–10, 1996

    Google Scholar 

  123. Vile RG, Nelson JA, Castleden S, Chong H, Hart IR: Systemic gene therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res 54: 6228–6234, 1994

    Google Scholar 

  124. Hall SJ, Sanford MA, Atkinson G, Chen SH: Induction of potent antitumor natural killer cell activity by herpes simplex virus-thymidine kinase and ganciclovir therapy in an orthotopic mouse model of prostate cancer. Cancer Res 58: 3221–3225, 1998

    Google Scholar 

  125. Wei C, Willis RA, Tilton BR, Looney RJ, Lord EM, Barth RK, Frelinger JG: Tissue-specific expression of the human prostate-specific antigen gene in transgenic mice: Implications for tolerance and immunotherapy. Proc Natl Acad Sci USA 94: 6369–6374, 1997

    Google Scholar 

  126. Gleich LL, Gluckman JL, Armstrong S, Biddinger PW, Miller MA, Balakrishnan K, Wilson KM, Saavedra HI, Stambrook PJ: Alloantigen gene therapy for squamous cell carcinoma of the head and neck: Results of a phase-1 trial. Arch Otolaryngol Head Neck Surg 124: 1097–1104, 1998

    Google Scholar 

  127. Gleich LL, Gluckman JL, Nemunaitis J, Suen JY, Hanna E, Wolf GT, Coltrera MD, Villaret DB, Wagman L, Castro D, Gapany M, Carroll W, Gillespie D, Selk LM: Clinical experience with HLA-B7 plasmid DNA/lipid complex in advanced squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 127: 775–779, 2001

    Google Scholar 

  128. Gu J, Kagawa S, Takakura M, Kyo S, Inoue M, Roth JA, Fang B: Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 60: 5359–5364, 2000

    CAS  PubMed  Google Scholar 

  129. Koga S, Hirohata S, Kondo Y, Komata T, Takakura M, Inoue M, Kyo S, Kondo S: A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther 11: 1397–1406, 2000

    Article  CAS  PubMed  Google Scholar 

  130. Lin CS, Chen ZP, Park T, Ghosh K, Leavitt J: Characterization of the human L-plastin gene promoter in normal and neoplastic cells. J Biol Chem 268: 2793–2801, 1993

    Google Scholar 

  131. Katabi MM, Chan HL, Karp SE, Batist G: Hexokinase type II: A novel tumor-specific promoter for gene-targeted therapy differentially expressed and regulated in human cancer cells. Hum Gene Ther 10: 155–164, 1999

    Google Scholar 

  132. Dachs GU, Patterson AV, Firth JD, Ratcliffe PJ, Townsend KM, Stratford IJ, Harris AL: Targeting gene expression to hypoxic tumor cells. Nat Med 3: 515–520, 1997

    Google Scholar 

  133. Binley K, Iqball S, Kingsman A, Kingsman S, Naylor S: An adenoviral vector regulated by hypoxia for the treatment of ischaemic disease and cancer. Gene Ther 6: 1721–1727, 1999

    Google Scholar 

  134. Harrington KJ, Linardakis E, Vile RG: Transcriptional control: An essential component of cancer gene therapy strategies? Adv Drug Deliv Rel 44: 167–184, 2000

    Google Scholar 

  135. Weichselbaum RR, Hallahan D, Fuks Z, Kufe D: Radiation induction of immediate early genes: Effectors of the radiation-stress response. Int J Radiat Oncol Biol Phys 30: 229–234, 1994

    Google Scholar 

  136. Hallahan DE, Mauceri HJ, Seung LP, Dunphy EJ, Wayne JD, Hanna NN, Toledano A, Hellman S, Kufe DW, Weichselbaum RR: Spatial and temporal control of gene therapy using ionizing radiation. Nat Med 1: 786–791, 1995

    Google Scholar 

  137. Rasmussen H, Rasmussen C, Lempicki M, Durham R, Brough D, King CR, Weichselbaum R: TNFerade Biologic: Preclinical toxicology of a novel adenovirus with a radiation-inducible promoter, carrying the human tumour necrosis factor alpha gene. Cancer Gene Ther 9; 951–957, 2002

    Google Scholar 

  138. Nettelbeck DM, Jerome V, Muller R: Gene therapy: Designer promoters for tumour targeting. Trends Genet 16: 174–181, 2000

    Google Scholar 

  139. Richards CA, Austin EA, Huber BE: Transcriptional regulatory sequences of carcinoembryonic antigen: Identification and use with cytosine deaminase for tumor-specific gene therapy. Hum Gene Ther 6: 881–893, 1995

    Google Scholar 

  140. Pang S, Dannull J, Kaboo R, Xie Y, Tso CL, Michel K, deKernion JB, Belldegrun AS: Identification of a positive regulatory element responsible for tissue-specific expression of prostate-specific antigen. Cancer Res 57: 495–499, 1997

    Google Scholar 

  141. Marples B, Scott SD, Hendry JH, Embleton MJ, Lashford LS, Margison GP: Development of synthetic promoters for radiation-mediated gene therapy. Gene Ther 7: 511–517, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Harrington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrington, K.J., Nutting, C.M. & Pandha, H.S. Gene therapy for head and neck cancer. Cancer Metastasis Rev 24, 147–164 (2005). https://doi.org/10.1007/s10555-005-5053-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-005-5053-3

Keywords

Navigation