Skip to main content

Advertisement

Log in

Progression of head and neck squamous cell cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Squamous cell cancer in the head and neck region (HNSC) is unique concerning its progression since it remains locoregional for long time and visceral metastases develop only in a later stage of the disease. Accordingly, molecular markers of the local invasion and the lymphatic dissemination both have critical importance. HNSC progression is associated with deregulated control of cell proliferation and apoptosis but it seems equally significant the disregulation of the proteolytic machineries. Here we outline the lymphatic metastatic cascade for HNSC to depict key molecular determinants as possible prognostic factors or therapeutic targets identifying immunological selection as a major feature. Unlike in local spreading, invasive potential of cancer cells seems to be less significant during lymphatic dissemination due to the anatomical properties of the lymphatic vessels and tissues. There is a general believe that HNSC is one disease however, data indicate that the anatomical localization of the tumor (the “soil”) such as oral, lingual, glottic or pharyngeal has a significant effect on the gene expression profile and corresponding biological behavior of HNSC. Furthermore, even the endocrine milieu of the host was proved to be influential in modulating the progression of HNSC. Gene expression profiling techniques combined with proteomics could help to define and select usefull genetic and biomarkers of progression of HNSC, some of them could well be potential novel therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stracke ML, Liotta LA: Multi-step cascade of tumor cell metastasis. In vivo 6: 309–316, 1992

    CAS  PubMed  Google Scholar 

  2. O-charoenrat P, G Pillai, S Patel, C Fisher,D Archer, S Eccles, Rhys-Evans P: Tumour thickness predicts cervical nodal metastases and survival in early oral tongue cancer. Oral Oncol 39: 386–390, 2003

    PubMed  CAS  Google Scholar 

  3. Yuen APW, KY Lam, LK Lam, CM Ho,A Wong, TL Chow, WF Yuen, Wei WI: Prognostic factoras of clinically stage I and II oral tongue carcinoma—a comparative study of stage, thickness, shape, growth pattern, invasive front malignancy grading, Martinez-Gimeno score, and pathologic features. Head Neck 24: 513–520, 2002

    PubMed  Google Scholar 

  4. Narayana A, Vaughan TM, Kathuria S, Fisher SG, Walter SA, Reddy SP: p53 overexpression is associated with bulky tumor and poor local control in T1 glottic cancer. Int J Radiation Oncology Biol Phys 46: 21–26, 2000

    CAS  Google Scholar 

  5. Gasco M, Crook T: The p53 network in head and neck cancer. Oral Oncol 39: 222–231, 2003

    PubMed  CAS  Google Scholar 

  6. Sittel C, Ruiz S, Volling P, Kvasnicka HM, Jungehülsisng KM, Eckel H:E Prognostic significance of Ki-67 (MIB1), PCNA and p53 in cancer of the oropharynx and oral cavity. Oral Oncol 35: 583–589, 1999

    PubMed  CAS  Google Scholar 

  7. de Vicente JC, Herreo-Zapatero A, Fresno MF, López-Arranz JS: Expression of cyclin D1 and Ki-67 in squamous cell carcinoma of the oral cavity: Clinicopathological and prognostic significance. Oral Oncol 38: 301–308, 2002

    Google Scholar 

  8. Lui M, Lawson G, Delos M, Jamart J, Ide C, Coche E, Weynand B, Desuter G, Hamoir M, Remacle M, Marbaix E: Predictive value of the fraction of cancer cells immunolabeled for proliferating cell nuclear antigen or Ki67 in biopsies of head and neck carcinomas to identify lymph node metastasis: comparison with clinical and radiologic examinations. Head and Neck 25: 280–288, 2003

    Google Scholar 

  9. Naresh KN, Lakshminaraanan K, Pai SA, Borges AM: Apoptosis index is a predictor of metastatic phenotype in patients with early stage squamous carcinoma of the tongue. Cancer 91: 578–584, 2001

    PubMed  CAS  Google Scholar 

  10. Dong Y, Sui L, Watanabe Y, Sugimoto K, Tokuda M: S-phase kinase-associated protein 2 expression in laryngeal squamous cell carcinomas and its prognostic implications. Oncol Rep 10: 321–325, 2003

    PubMed  CAS  Google Scholar 

  11. Lydiatt WM, Davidson PJ, Schantz SP, Carvana S, Chaganti RS: 9p21 deletion correlates with recurrence in head and neck cancer. Head Neck 20: 113–118, 1998

    PubMed  CAS  Google Scholar 

  12. Vielba R, Bilbao J, Ispizua A, Zabalza I, Alfaro J, Rezola R, Moreno E, Elorriaga J, Alonso I, Baroja A, de la Hoz C: p53 Cyclin D1 as prognostic factors in squamous cell carcinoma of the larynx. Laryngoscope 113: 167–172, 2003

    PubMed  CAS  Google Scholar 

  13. Masuda M, Suzui M, Yasumatu R, Nakashima T, Kuratomi Y, Azuma K, Tomita K, Komiyama S, Weinstein IB: Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res 62: 3351–3355, 2002

    PubMed  CAS  Google Scholar 

  14. Dong Y, Sui L, Sugmimoto K, Tai Y, Tokuda M: Cyclin D1-CDK4 complex, a possible critical factor for cell proliferation and prognosis in laryngeal squamous cell carcinomas. Int J Cancer (Pred Oncol): 95: 209–215, 2001

    CAS  Google Scholar 

  15. Tanaka N, Ogi K, Odajima T, Dehari H, Yamada S, Sonoda T, Kohama G: pRb2/p130 protein expression is correlated with clinicopathologic findings in patients with oral squamous cell carcinoma. Cancer 92: 2117–2125, 2001

    PubMed  CAS  Google Scholar 

  16. Georgiou A, Gomatos IP, Ferekidis E, Syrigos K, Bistola V, Giotakis J, Adamopoulos G, Androulakis G: Prognostic significance of p53, bax and bcl-2 gene expression in patients with laryngeal carcinoma. Eur J Surg Oncol 27: 574–580, 2001

    PubMed  CAS  Google Scholar 

  17. Sidransky D: Molecular biology of head and neck tumors. In: DeVita T Jr, Hellman S, Rosenberg SA (eds) Cancer: Principles & Practice of Oncology Lippincott-Raven Publishers, Philadelphia, 1997, p 735

    Google Scholar 

  18. Issa J-PJ: Methylation and prognosis: of molecular clocks and hypermethylator phenotypes. Clin Cancer Res 9: 2879–2881, 2003

    PubMed  CAS  Google Scholar 

  19. Ogi K, Toyota, M, Ohe-Toyota, M, Tanaka N, Noguchi M, Sonoda T, Kohama G, Tokino T: Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin Cancer Res 8: 3164–3171, 2002

    PubMed  CAS  Google Scholar 

  20. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JPJ: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 96: 8681–8686, 1999

    Article  CAS  PubMed  Google Scholar 

  21. Brock MV, Gou MG, Akiyama Y, Muller A, Wu TT, Montgomey E, Deasel M, Germonpre P, Rubinson L, Heitmiller RF, Yang SC, Forastiere AA, Baylin SB, Herman JG: Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 9: 2912–2919, 2003

    PubMed  CAS  Google Scholar 

  22. Remenár É, Számel I, Budai B, Gaudi I, Kásler M, Guny S: Serum sex steroid and hypophysis hormone levels of chronic alcoholics and head and neck cancer patients ad compared to normal controls. Hungarian Oncology 46: 329–332, 2002

    PubMed  Google Scholar 

  23. Remenár É, Számel I, Budai B, Orosz Zs, Gaudi I, Kásler M, Gundy S: Hormonal influence in head and neck cancer. Hungarian Oncology 47: 155–159, 2003

    PubMed  Google Scholar 

  24. Bhatavdekar JM, Patel DD, Vora HH, Shaj NG, Chikhlikar PR, Ghosh N: Prolactin as a local growth promoter in patients with locally advanced tongue cancer: GCRI experience. Head Neck 22: 257–264, 2000

    PubMed  CAS  Google Scholar 

  25. Tavassoli M, Soltaninia J, Rudnicka J, Mashanyare D, Johnson N, Gaken J: Tamoxifen inhibits the growth of head and neck cancer cells and sensitizes these cells to cisplatin induced apoptosis: Role of TGF-beta1. Carcinogenesis 23: 1569–1575, 2002

    PubMed  CAS  Google Scholar 

  26. Semenza GL: HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cel Biol 13: 167–171, 2001

    CAS  Google Scholar 

  27. Harris AL: Hypoxia—A key regulatory factor in tumour growth. Nature Rev Cancer 2: 38–47, 2001

    Google Scholar 

  28. Fyles AW, Milosevic M, Wong R, Kavanagh MC, Pintilie M, Sun A, Chapman W, Levin W, Manchul L, Keane TJ, Hill RP: Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48: 149–156, 1998

    PubMed  CAS  Google Scholar 

  29. Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM: Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6: 1335–1340, 2000

    PubMed  CAS  Google Scholar 

  30. Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp J: Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 54: 215–228, 2002

    PubMed  Google Scholar 

  31. Wijffels KI, Kaanders JH, Rijken PF, Bussink J, van den Hoogen F, Marres HA, de Wilde PC, Raleigh JA, van der Kogel AJ: Vascular architecture and hypoxic profiles in human head and neck squamous cell carcinomas. Br J Cancer 83: 674–683, 2000

    PubMed  CAS  Google Scholar 

  32. Dunst J, Stadler P, Becker A, Lautenschläger C, Poelz T, Hänsgen G, Molls M, Kuhnt T: Tumor volume and tumor hypoxia in head and neck cancers. The amount of the hypoxic volume is important. Strahlenther Onk 179: 521–526, 2003

    Google Scholar 

  33. Beasley NJP, Leek R, Alam M, Turley H, Cox GJ, Gatter K, Millard P, Fuggle S, Harris AL: Hypoxia-inducible factors HIF-1α and HIF2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 62: 2493–2497, 2002

    PubMed  CAS  Google Scholar 

  34. Shemiani B, Crowe DL: Hypoxic induction of HIF-1alpha and VEGF expression in head and neck squamous cell carcinoma lines is mediated by stress activated protein kinases. Oral Oncol 38: 251–257, 2002

    Article  CAS  PubMed  Google Scholar 

  35. Folkman J: Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29: 15–18, 2002

    PubMed  CAS  Google Scholar 

  36. Murray JD, Carlson GW, McLaughlin K, Pennington M, Lynn M, DeRose PB, Williams JK, Cohen C: Tumor angiogenesis as a prognostic factor in laryngeal cancer. Am J Surg 174: 523–526, 1997

    PubMed  CAS  Google Scholar 

  37. Beatrice F, Cammarota R, Giordano C, Corrado S, Ragona R, Sartoris A, Bussolino F, Valente G: Angiogenesis: prognostic significance in laryngeal cancer. Anticancer Res 18: 4737–4740, 1998

    PubMed  CAS  Google Scholar 

  38. Gallo O, Masini E, Morbidelli L, Franchi A, Fini-Storchi I, Vergari WA, Ziche M: Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90: 587–596, 1998

    PubMed  CAS  Google Scholar 

  39. Lopez-Graniel CM, Tamez de Leon D, Meneses-Garcia A, Gomez-Ruiz C, Frias-Mendivil M, Granados-Garcia M, Barrera-Franco JL: Tumor angiogenesis as a prognostic factor in oral cavity carcinoma. J Exp Clin Cancer Res 20: 463–468, 2001

    PubMed  CAS  Google Scholar 

  40. Sion-Vardy N, Fliss DM, Prinsloo I, Shoham-Vardi I, Benharroch D: Neoangiogeneesis in squamous cell carcinoma of the larynx-biological and prognostic associations. Pathol Res Pract 197: 1–5, 2001

    PubMed  CAS  Google Scholar 

  41. Tae K, El-Naggar AK, Yoo E, Feng L, Lee JJ, Hong WK, Hittelman WN, Shin DM: Expression of vascular endothelial growth factor and microvessel density in head and neck tumorigenesis. Clin Cancer Res 6: 2821–2828, 2000

    PubMed  CAS  Google Scholar 

  42. Grammatica L, Piepoli S, D’Auria C, Achille G, Marzullo F, Zito FA, Labriola A, Salvatore C, Paradiso A: Primary tumours neoangiogenesis and P543 expression in oral carcinoma patients. J Exp Clin Cancer Res 20: 225–230, 2001

    PubMed  CAS  Google Scholar 

  43. Lukits J, T’imár J, Juhász A, Döme B, Paku S, Répássy G: Progression difference between cancer of the larynx and hypopharynx is not due to tumor size and vascularization. Otolaryngol Head Neck Surg 125: 18–22, 2001

    PubMed  CAS  Google Scholar 

  44. Pomerantz RG, Grandis JR: The role of epidermal growth factor receptor in head and neck squamous cell carcinoma. Curr Oncol Rep 5: 140–146, 2003

    PubMed  Google Scholar 

  45. O-charoenrat P, Rhys-Evans PH, Eccles SA: Expression of matrix metalloproteinases and their inhibitors correlates with invasion and metastasis in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 127: 813–820, 2001

    PubMed  CAS  Google Scholar 

  46. Liss C, Fekete MJ, Hasina R, Lam CD, Lingen MW: Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages. Int J Cancer 93: 781–785, 2001

    PubMed  CAS  Google Scholar 

  47. Smith BD, Smith GL, Carter D, DiGiovanna MP, Kasowitz KM, Sasaki CT, Haffty BG: Molecular marker expression in oral and oropharyngeal squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 127: 780–785, 2001

    PubMed  CAS  Google Scholar 

  48. Mineta H, Miura K, Ogino T, Takebayashi S, Misawa K, Ueda Y: Vascular endothelial growth factor (VEGF) expression correlates with p53 and Ki-67 expression in tongue squamous cell carcinoma. Anticancer Res 22: 1039–1044, 2002

    PubMed  CAS  Google Scholar 

  49. Répássy G, Czigner J, Ribári O, Lapis K: The barrier-like role of activated connective tissue against the spread of supraglottic laryngeal carcinoma. Arch Otorhinolaryngol 245: 151–154, 1988

    PubMed  Google Scholar 

  50. Chow V, Yue APW, Lam KY, Tsai GSW, Ho WK, Wei WI: A comparative study of clinicopathological significance of E-cadherin and catenins (α β γ) expression in the surgical management of oral tongue carcinoma. J Cancer Res Clin Oncol 127: 59–63, 2001

    PubMed  CAS  Google Scholar 

  51. Chang HW, Chow V, Lam KY, Wei WI, Yuen APW: Loss of E-cadherin expression resulting from promoter hypermethyalation in oral tongue carcinoma and its prognostic significance. Cancer 94: 386–392, 2002

    PubMed  CAS  Google Scholar 

  52. Mercurio AM, Rabinovitz I, Shaw LM: The alpha 6 beta 4 integrin and epithelial cell migration. Curr Opin Cell Biol 13: 541–545, 2001

    PubMed  CAS  Google Scholar 

  53. Ramos DM, But M, Regezi J, Schmidt BL, Atakilit A, Dang D, Ellis D, Jodan R, Li X: Expression of integrin β 6 enhances invasive behavior in oral squamous cell carcinoma. Matrix Biol 21: 297–307, 2002

    PubMed  CAS  Google Scholar 

  54. Regezi JA, Ramos DM, Pytela R, Dekker NP, Jordan RCK: Tenascin and β 6 integrin are overexpressed in floor of mount in situ carcinomas and invasive squamous cell carcinomas. Oral Oncol 38: 332–336, 2002

    PubMed  CAS  Google Scholar 

  55. Li X, Yang Y, Hu Y, Dang D, Regezi J, Schmidt BL, Atakilit A, Chen B, Ellis D, Ramos DM: α vβ 6-Fyn signaling promotes oral cancer progression. J Biol Chem 278: 41646–41653, 2003

    PubMed  CAS  Google Scholar 

  56. Répássy G, Forste-Horváth Cs, Juhász A, Ádány R, Tamássy A, T’imár J: Expression of invasion markers CD44v6/v3, NM23 and MMP2 in laryngeal and hypopharyngeal carcinoma. Pathol Oncol Res 4: 14–21, 1998

    PubMed  Google Scholar 

  57. Rodrigo JP, Dominguez F, Alvarez C, Gonzalez MV, Herrero A, Suarez C: Clinicopathologic significance of expression of CD44s and CD44v6 isoforms in squamous carcinoma of the supraglottic larynx. Am J Clin Pathol 118: 67–72, 2002

    PubMed  CAS  Google Scholar 

  58. Kanke M, Fuji M, Kameyama K, Kanzaki J, Tokumaru Y, Imanishi Y, Tomita T, Matsumura Y: Clinicopathological significance of expression of CD44 variants in head and neck squamous cell carcinoma. Jpn J Cancer Res 91: 410–415, 2000

    PubMed  CAS  Google Scholar 

  59. Carinci F, Stabellini G, Calvitti M, Pelucchi S, Targa L, Farina A, Pezzetti F, Pastore A: CD44 as prognostic factor in oral and oropharyngeal squamous cell carcinoma. J Craniofac Surg 13: 85–89, 2002

    PubMed  Google Scholar 

  60. Maulu S-M, Luukkaa M, Grénman R, Jackson D, Jalkanen S, Ristamäki R: Intratumoral lymphatics are essential for the metastatic spread and prognosis is squamous cell carcinoma of the head and neck region. Cancer Res 63: 1920–1926, 2003

    Google Scholar 

  61. Lapis K, T’imár J: Role of elastin-matrix interactions in tumor progression. Semin Cancer Biol 12: 209–217, 2002

    PubMed  CAS  Google Scholar 

  62. Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaka Y, Yoshida J, Hattori K, Tomiyama Y, Raz A, Kubi T: Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6: 4635–4640, 2000

    PubMed  CAS  Google Scholar 

  63. McCawley LJ, Matrisian LM: Matrix metallopoteinases: Multifunctional contributors to tumor progression. Mol Med Today 6: 149–156, 2000

    PubMed  CAS  Google Scholar 

  64. Shimada T, Nakamura H, Yamashita K, Kawata R, Muakami Y, Fujimoto N, Sato H, Seiki M, Okada Y: Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human oral squamous cell carcinomas: Implications for lymph node metastasis. Clin Exp Metast 18: 179–188, 2000

    CAS  Google Scholar 

  65. Yoshizaki T, Maruyama Y, Sato H, Furukawa M: Expression of tissue inhibitor of matrix metallopoteinase-2 correlates with activation of matrix metalloproteinase-2 and predicts poor prognosis in tongue squamous cell carcinoma. Int J cancer (Pred Oncol) 95: 44–50, 2001

    CAS  Google Scholar 

  66. O-charoenat P, Rhys-Evans P, Eccles SA: Expression of vascular endothelial growth facto family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer 92: 556–568, 2001

    Google Scholar 

  67. Franchi A, Santucci M, Masini E, Sardi I, Paglierani M, Gallo O: Expression of matrix metalloproteinase 1, matrix metalloproteinase 2, and matrix metalloproteinase 9 in carcinoma of the head and neck. Cancer 95: 1902–1910, 2002

    PubMed  CAS  Google Scholar 

  68. Budihna M, Strojan P, Smid L, Skrk, J, Vrhovec I, Zupevc A, Rudolf Z, Zargi M, Krasovec M, Svetic B, Kopitar-Jerala N, Kos J: Prognostic value of cathepsins B, H, L, D and their endogenous inhibitors stefins A and B in head and neck carcinoma. Biol Chem Hoppe Seyler 377: 385–390, 1996

    PubMed  CAS  Google Scholar 

  69. Smid L, Strojan P, Budihna M, Skrk J, Vrhovec J, Zargi M, Kos J: Prognostic value of cathepsins B, L and stefins A and B in laryngeal carcinoma. Eur Arch Otolaryngol 254: 150–153, 1997

    Article  Google Scholar 

  70. Strojan P, Budihna M, Smid L, Svetic B, Vrhovec I, Kos J, Skrk J: Prognostic significance of cysteine proteinases chathepsins B and L and their endogenous inhibitors stefins A and B patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 6: 1052–1062, 2000

    PubMed  CAS  Google Scholar 

  71. Vlodavsky I, Goldsmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, Elkin M, Peretz T, Fridmann Y: Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 12: 121–129, 2002

    PubMed  CAS  Google Scholar 

  72. Kurokawa H, Katsube K, Podyma KA, Ikuta M, Iseki H, Nakajima M, Akashi T, Omura K, Takagi M, Yanagishita M: Heparanase and tumor invasion patterns in human oral squamous cell carcinoma xenografts. Cancer Sci 94: 277–285, 2003

    PubMed  CAS  Google Scholar 

  73. Ikuta M, Podyma KA, Maruama K, Enomoto S, Yanagishia M: Expression of heparanase in oral cancer cell lines and oral cancer tissues. Oral Oncol 37: 177–184, 2001

    PubMed  CAS  Google Scholar 

  74. T’imár J, Csuka O, Orosz Zs, Jeney A, Kopper L: Molecular pathology of tumor metastasis. I. Predictive pathology. Pathol Oncol Res 7: 217–230, 2001

    Article  Google Scholar 

  75. Silletti S, Paku S, Raz A: Tumor cell motility and metastasis. Autocrine motility factor and metastasis. Autocrine motility factor as an example of ecto/exoenzyme cytokines. Pathol Oncol Res 3: 230–254, 1997

    Article  PubMed  CAS  Google Scholar 

  76. Shimizu K, Tani M, Watanabe H, Nagamachi Y, Niinaka Y, Shiroishi T, Ohwada S, Raz A, Yokota J: The autocrine motility factor receptor gene encodes a novel type of seven tansmembrane protein. FEBS 456: 295–300, 1999

    CAS  Google Scholar 

  77. Nam SW, Clair T, Kim S, McMarlin A, Schiffmann E, Liotta LA, Stracke ML: Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res 61: 6938–6944, 2001

    Google Scholar 

  78. Niinaka Y, Haga A, Negishi A, Yoshimasu H, Raz A, Amagasa T: Regulation of cell motility via hign and low affinity autocrine motility factor (AMF) receptor in human oral squamous carcinoma cells. Oral Oncology 38: 49–55, 2002

    PubMed  CAS  Google Scholar 

  79. Di Renzo MF, Olivero M, Matone T, Maffe A, Maggiora P, De Stefani A, Valente G, Giordano S, Cortesina G, Comoglio PM: Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene 19: 1547–1555, 2000

    PubMed  CAS  Google Scholar 

  80. Cotesina G, Martone T, Galeazzi E, Olivero M, De Stefani A, Bussi M, Valente G, Comoglio PM, Di Renzo M: Staging of head and neck squamous cell carcinoma using the met oncogene product as marker of tumor cells in lymph node metastases. Int J Cancer (Pred Oncol) 89: 286–292, 2000

    Google Scholar 

  81. Aebersold DM, Kollar A, Beer KT, Laissue J, Greiner RH, Djonov V: Involvement of the hepatocyte growth factor/scatter facto receptor c-met and of Bcl-xL in the resistance of oropharyngeal cancer to ionizing radiation. Int J Cancer (Radiat Oncol Invest) 96: 41–54, 2001

    CAS  Google Scholar 

  82. Zeng Q, McCauley LK, Wang CY: Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2. J Biol Chem 277: 50137–50142, 2002

    PubMed  CAS  Google Scholar 

  83. Ranelletti FO, Almadori G, Rocca B, Ferrandina G, Ciabattoni G, Habib A, Galli J, Maggiano N, Gessi M, Lauriola F: Prognostic significance of cyclooxygenase-2 in laryngeal squamous cell carcinoma. Int J Cancer (Pred Oncol) 99: 343–349, 2001

    Google Scholar 

  84. Renkonen J, Wolff H, Paavonen T: Expression of cyclo-oxygenase-2 in human tongue carcinoma and its precursor lesions. Virchows Arch 440: 594–597, 2002

    PubMed  CAS  Google Scholar 

  85. Peng JP, Su CY, Chang HC, Chai CY, Hung WC: Overexpression of cyclo-oxygenase 2 in squamous cell carcinoma of the hypopharynx. Hum Pathol 33: 100–104, 2002

    PubMed  CAS  Google Scholar 

  86. Lim S-C, Zhang S, Ishii G, Endoh Y, Kodama K, Miyamoto S, Hayashi R, Ebihara S, Cho J-S, Ochiai A: Predictive markers for late cervical metastasis in stage I and II invasive squamous cell carcinoma of the oral tongue. Clin Cancer Res 10: 166–172, 2004

    Google Scholar 

  87. Gallo O, Fabbroni V, Sardi I, Magnelli L, Boddi V, Franchi A: Correlation between nitric oxide and cyclooxygenase-2 pathways in head and neck squamous cell carcinomas. Biochem Biophys Res Commun 299: 517–524, 2002

    PubMed  CAS  Google Scholar 

  88. Jaeckel EC, Raja S, Tan J, Das SK, Dey SK, Girod DA, Tsue TT, Sanford TR: Correlation of expression of cyclooxygenase-2, vascular endothelial growth factor, and peroxisome proliferator-activated receptor delta with had and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Sug 127: 1253–1259, 2001

    CAS  Google Scholar 

  89. Gallo O, Franchi A, Magnelli L, Sardi I, Vannacci A, Boddi V, Chiarugi V, Masini E: Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis metastasis. Neoplasia 3: 53–61, 2001

    PubMed  CAS  Google Scholar 

  90. Juhász A, Bádon H, Répássy G, Adány R: Characteristic distribution patterns of tenascin in laryngeal hypopharyngeal cancers. Laryngoscope 110: 84–92, 2000

    PubMed  Google Scholar 

  91. Pepper MS, Skobe M: Lymphatic endothelium: morphological, molecular and functional properties. J Cell Biol 163: 209–213, 2003

    PubMed  CAS  Google Scholar 

  92. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K: Lymphangiogenesis and cancer metastasis. Nature Rev Cancer 2: 573–583, 2002

    CAS  Google Scholar 

  93. Nathanson SD: Insights into the mechanisms of lymph node metastasis. Cancer 98: 413–423, 2003

    PubMed  Google Scholar 

  94. Van Trappen PO, Pepper MS: Lymphatic dissemination of tumour cells and the formation micrometastases. Lancet Oncol 3: 44–52, 2002

    PubMed  CAS  Google Scholar 

  95. Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Jackson DG, Skobe M: Molecular characterization of lymphatic endothelial cells. PNAS 99: 160069–16074, 2002

    Google Scholar 

  96. Jain RK, Fenton BT: Intratumoral lymphatic vessels: A case of mistaken identity or malfunction? J Natl Cancer Inst 94: 417–421, 2002

    PubMed  Google Scholar 

  97. Irjala H, Alanen K, Grénman R, Heikkilä P, Joensuu H, Jalkanen S: Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. Cancer Res 63: 4671–4676, 2003

    PubMed  CAS  Google Scholar 

  98. Genden EM, Ferlito A, Bradley PJ, Rinaldo A, Scully C: Neck disease and distant metastases. Oral Oncol 39: 207–212, 2003

    PubMed  Google Scholar 

  99. Ferlito A, Shaha AR, Rinaldo A: The incidence of lymph node micrometastases in patients pathologically staged N0 in cancer of oral cavity and oropharynx. Oral Oncol 38: 3–5, 2002

    PubMed  CAS  Google Scholar 

  100. Stoeckli SJ, Pfaltz M, Steinert H, Schmid S: Histopathological features of occult metastasis detected by sentinel lymph node biopsy in oral and oropharyngeal squamous cell carcinoma. Laryngoscope 112: 111–115, 2002

    PubMed  Google Scholar 

  101. Chiesa F, Mauri S, Tradati N, Calabrese L, Giugliano G, Ansarin M, Andrle J, Zurrida S, Orecchia R, Scully C: Surfing prognostic factors in head and neck cancer at the Millennium. Oral Oncol 35: 590–596, 1999

    PubMed  CAS  Google Scholar 

  102. Quon H, Liu FF, Cummings BJ: Potential molecular prognostic markers in head and neck squamous cell carcinomas. Head Neck 23: 147–159, 2001

    PubMed  CAS  Google Scholar 

  103. Le Q-T, Giaccia AJ: Therapeutic exploitation of the physiological and molecular genetic alterations in head and neck cancer. Clin Cancer Res 9: 4287–4295, 2003

    Google Scholar 

  104. Squire JA, Bayani J, Luk C, Unwin L, Tokunaga J, McMillan C, Irish J, Brown D, Gullane P, Kamel-Reid S: Molecular cytogenetic analysis of head and neck squamous cell carcinoma: By comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head Neck 24: 874–887, 2002

    PubMed  Google Scholar 

  105. Hwang D, Alevizos I, Schmitt WA, Misra J, Ohyama H, Todd R, Mahadevappa M, Warrington JA, Stephanopoulos G, Wong DT, Stephanopoulos G: Genomic dissection for characterization of cancerous oral epithelium tissues using transcription profiling. Oral Oncology 39: 259–268, 2003

    PubMed  CAS  Google Scholar 

  106. Leethanakul C, Knezevic V, Patel V, Amornphimoltham P, Gillespie J, Shillitoe EJ, Emko P, Park MH, Emmert-Buck MR, Strausberg RL, Krizman DB, Gutkind JS: Gene discovery in oral squamous cell carcinoma through the head and neck cancer genome anatomy project: confirmation by microarray analysis. Oral Oncol 39: 248–258, 2003

    PubMed  CAS  Google Scholar 

  107. Dong G, Loukinova E, Chen Z, Gangi L, Chanturita TI, Liu ET, van Waes C: Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis and the NF-κ B signal pathway. Cancer Res 61: 4797–4808, 2001

    PubMed  CAS  Google Scholar 

  108. Chen Z, Zhang K, Zhang X, Yuan XH, Yuan Z, Jin L, Xiong M: Comparison of gene expression between metastatic derivatives and their poorly metastatic parental cells implicates crucial tumor-environment interaction in metastasis of head and neck squamous cell carcinoma. Clin Exp Metast 20: 335–342, 2003

    CAS  Google Scholar 

  109. Zhang X, Liu Y, Gilcrease MZ, Yuan XH, Clayman GL, Adler-Storthz K, Chen Z: A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer 95: 1663–1673, 2002

    PubMed  Google Scholar 

  110. Nagata M, Fujita H, Ida H, Hoshina H, Inoue T, Seki Y, Ohnishi M, Ohyama T, Shiongaki S, Kaji M, Saku T, Takagi R: Identification of potential biomarkers of lymph node metastasis is oral squamous cell carcinoma bay cDNA microarray analysis. Int J Cancer 106: 683–689, 2003

    PubMed  CAS  Google Scholar 

  111. Harms JF, Welch DR, Miele ME: KISS1 metastasis suppression and emergent pathways. Clin Exp Metast 20: 11–18, 2003

    CAS  Google Scholar 

  112. Salerno M, Ouatas T, Palmieri D, Steeg PS: Inhibition of signal transduction by the NM23 metastasis suppressor: possible mechanisms. Clin Exp Metast 20: 3–10, 2003

    CAS  Google Scholar 

  113. Smiraglia DJ, Smith LT, Lang JC, Rush LJ, Dai Z, Schuller DE, Plass C: Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40: 25–33, 2003

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Tímár.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tímár, J., Csuka, O., Remenár, É. et al. Progression of head and neck squamous cell cancer. Cancer Metastasis Rev 24, 107–127 (2005). https://doi.org/10.1007/s10555-005-5051-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-005-5051-5

Keywords

Navigation