Skip to main content

Advertisement

Log in

De-regulation of ubiquitin-dependent proteolysis and the pathogenesis of malignant melanoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Malignant melanoma is similar to the other types of cancer in terms that the pathogenesis of this lethal disease includes abnormal activation of proteins that mediate oncogenic signaling as well as inhibition of anti-proliferative and pro-apoptotic protein regulators. Activity of both types of cellular regulators is often dependent on their abundance and is determined by the rate of proteolysis via the ubiquitin pathway. Aberrations in ubiquitin-dependent degradation of regulatory proteins frequently occur in human cancers including malignant melanoma. Melanoma cells that re-program ubiquitin-dependent proteolysis toward accelerated degradation of protein regulators of tumor suppression and abnormal stabilization of oncogenic proteins are likely to gain an advantage in growth and survival. Specific characteristics of melanoma biology include rapid metastasizing and resistance to conventional anticancer therapy. Exploration of these traits should place an emphasis on a subset of the signal transduction pathways that are governed by a number of key protein regulators whose stability and activity becomes deregulated during progression of malignant melanoma. Targeting the ubiquitination and degradation of these pivotal proteins may provide a promising new therapeutic approach to treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hershko A, Ciechanover A: The ubiquitin system. Annu Rev Biochem 67: 425–479, 1998

    Google Scholar 

  2. Weissman AM: Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169–178, 2001

    Google Scholar 

  3. Joazeiro CA, Weissman AM: RING finger proteins: Mediators of ubiquitin ligase activity. Cell 102: 549–552, 2000

    Google Scholar 

  4. Deshaies RJ: SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15: 435–467, 1999

    Google Scholar 

  5. Harper JW, Burton JL, Solomon MJ: The anaphase-promoting complex: It’s not just for mitosis any more. Genes Dev 16: 2179-2206, 2002

    Google Scholar 

  6. Laney JD, Hochstrasser M: Substrate targeting in the ubiquitin system. Cell 97: 427–430, 1999

    Google Scholar 

  7. Fuchs SY, Fried VA, Ronai Z: Stress-activated kinases regulate protein stability. Oncogene 17: 1483–1490, 1998

    Google Scholar 

  8. Fuchs SY: The role of ubiquitin-proteasome pathway in oncogenic signaling. Cancer Biol Ther 1: 337–341, 2002

    Google Scholar 

  9. Bashir T, Pagano M: Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 88: 101–144, 2003

    Google Scholar 

  10. Guardavaccaro D, Pagano M: Oncogenic aberrations of cullin-dependent ubiquitin ligases. Oncogene 23: 2037–2049, 2004

    Google Scholar 

  11. Pagano M, Benmaamar R: When protein destruction runs amok, malignancy is on the loose. Cancer Cell 4: 251–256, 2003

    Google Scholar 

  12. Sulaimon SS, Kitchell BE: The basic biology of malignant melanoma: Molecular mechanisms of disease progression and comparative aspects. J Vet Intern Med 17: 760–772, 2003

    Google Scholar 

  13. McGowan CH: Regulation of the eukaryotic cell cycle. Prog Cell Cycle Res 5: 1–4, 2003

    Google Scholar 

  14. Halaban R: Melanoma cell autonomous growth: The Rb/E2F pathway. Cancer Metastasis Rev 18: 333–343, 1999

    Google Scholar 

  15. Harper JW: Cyclin dependent kinase inhibitors. Cancer Surv 29: 91–107, 1997

    Google Scholar 

  16. Del Sal G: The Mammalian cell cycle and its aberrations in cancer cells. Adv Clin Path 1: 123–136, 1997

    Google Scholar 

  17. Halaban R, Miglarese MR, Smicun Y, Puig S: Melanomas, from the cell cycle point of view (Review). Int J Mol Med 1: 419–425, 1998

    Google Scholar 

  18. Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, Clurman BE: Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 5: 403–410, 2000

    Google Scholar 

  19. Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M: Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 115: 71–82, 2003

    Google Scholar 

  20. Bendjennat M, Boulaire J, Jascur T, Brickner H, Barbier V, Sarasin A, Fotedar A, Fotedar R: UV irradiation triggers ubiquitin-dependent degradation of p21(WAF1) to promote DNA repair. Cell 114: 599–610, 2003

    Google Scholar 

  21. Rieber M, Strasberg Rieber M: Apoptosis-inducing levels of UV radiation and proteasome inhibitors produce opposite effects on p21(WAF1) in human melanoma cells. Int J Cancer 86: 462–467, 2000

    Google Scholar 

  22. Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A: Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278: 25752–25757, 2003

    Google Scholar 

  23. Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, Krek W: Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA 98: 5043–5048, 2001

    Google Scholar 

  24. Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM, Hershko A: Inverse relation between levels of p27(Kip1) and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer 91: 1745–1751, 2001

    Google Scholar 

  25. Schiffer D, Cavalla P, Fiano V, Ghimenti C, Piva R: Inverse relationship between p27/Kip.1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and Western blot. Neurosci Lett 328: 125–128, 2002

    Google Scholar 

  26. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M, Monti F, Loda M, Pagano M: Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest 110: 633–641, 2002

    Google Scholar 

  27. Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, Perkins SL, Elenitoba-Johnson KS: Expression of Skp2, a p27(Kip1) ubiquitin ligase, in malignant lymphoma: Correlation with p27(Kip1) and proliferation index. Blood 100: 2950–2956, 2002

    Google Scholar 

  28. Yang G, Ayala G, De Marzo A, Tian W, Frolov A, Wheeler TM, Thompson TC, Harper JW: Elevated Skp2 protein expression in human prostate cancer: Association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res 8: 3419–3426, 2002

    Google Scholar 

  29. Penin RM, Fernandez-Figueras MT, Puig L, Rex J, Ferrandiz C, Ariza A: Over-expression of p45(SKP2) in Kaposi’s sarcoma correlates with higher tumor stage and extracutaneous involvement but is not directly related to p27(KIP1) down-regulation. Mod Pathol 15: 1227–1235, 2002

    Google Scholar 

  30. Inui N, Kitagawa K, Miwa S, Hattori T, Chida K, Nakamura H, Kitagawa M: High expression of Cks1 in human non-small cell lung carcinomas. Biochem Biophys Res Commun 303: 978–984, 2003

    Google Scholar 

  31. Dowen SE, Scott A, Mukherjee G, Stanley MA: Overexpression of Skp2 in carcinoma of the cervix does not correlate inversely with p27 expression. Int J Cancer 105: 326–330, 2003

    Google Scholar 

  32. Ben-Izhak O, Lahav-Baratz S, Meretyk S, Ben-Eliezer S, Sabo E, Dirnfeld M, Cohen S, Ciechanover A: Inverse relationship between Skp2 ubiquitin ligase and the cyclin dependent kinase inhibitor p27Kip1 in prostate cancer. J Urol 170: 241–245, 2003

    Google Scholar 

  33. Musat M, Korbonits M, Pyle M, Gueorguiev M, Kola B, Morris DG, Powell M, Dumitrache C, Poiana C, Grossman AB: The expression of the F-box protein Skp2 is negatively associated with p27 expression in human pituitary tumors. Pituitary 5: 235–242, 2002

    Google Scholar 

  34. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M: Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3: 231–234, 1997

    Google Scholar 

  35. Morgan MB, Cowper SE: Expression of p-27 (kip1) in nevi and melanomas. Am J Dermatopathol 21: 121–124, 1999

    Google Scholar 

  36. von Willebrand M, Zacksenhaus E, Cheng E, Glazer P, Halaban R: The tyrphostin AG1024 accelerates the degradation of phosphorylated forms of retinoblastoma protein (pRb) and restores pRb tumor suppressive function in melanoma cells. Cancer Res 63: 1420–1429, 2003

    Google Scholar 

  37. Spruck CH, Strohmaier HM: Seek and destroy: SCF ubiquitin ligases in mammalian cell cycle control. Cell Cycle 1: 250–254, 2002

    Google Scholar 

  38. Diehl JA, Cheng M, Roussel MF, Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12: 3499–3511, 1998

    Google Scholar 

  39. Reed SI: Ratchets and clocks: The cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 4: 855–864, 2003

    Google Scholar 

  40. Calhoun ES, Jones JB, Ashfaq R, Adsay V, Baker SJ, Valentine V, Hempen PM, Hilgers W, Yeo CJ, Hruban RH, Kern SE: BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: Potential therapeutic targets. Am J Pathol 163: 1255–1260, 2003

    Google Scholar 

  41. Enders GH: Cyclins in breast cancer: Too much of a good thing. Breast Cancer Res 4: 145–147, 2002

    Google Scholar 

  42. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper, JW, Elledge SJ: Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294: 173–177, 2001

    Google Scholar 

  43. Welcker M, Orian A, Jin J, Grim JA, Harper JW, Eisenman RN, Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA, 2004

  44. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. Embo J 23: 2116–2125, 2004

    Google Scholar 

  45. Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B, Lengauer C: Inactivation of hCDC4 can cause chromosomal instability. Nature 428: 77–81, 2004

    Google Scholar 

  46. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE, Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 12: 381–392, 2003

    Google Scholar 

  47. Hamelers IH, van Schaik RF, Sipkema J, Sussenbach JS, Steenbergh PH: Insulin-like growth factor I triggers nuclear accumulation of cyclin D1 in MCF-7S breast cancer cells. J Biol Chem 277: 47645–47652, 2002

    Google Scholar 

  48. Sharma M, Chuang WW, Sun Z: Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem 277: 30935–30941, 2002

    Google Scholar 

  49. Sithanandam G, Smith GT, Masuda A, Takahashi T, Anderson LM, Fornwald LW: Cell cycle activation in lung adenocarcinoma cells by the ErbB3/phosphatidylinositol 3-kinase/Akt pathway. Carcinogenesis 24: 1581–1592, 2003

    Google Scholar 

  50. Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M: Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and beta-catenin pathways. Cancer Res 61: 7318–7324, 2001

    Google Scholar 

  51. Yang Y, Yu X: Regulation of apoptosis: The ubiquitous way. Faseb J 17: 790–799, 2003

    Google Scholar 

  52. Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD: Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23: 2009–2015, 2004

    Google Scholar 

  53. Franco AV, Zhang XD, Van Berkel E, Sanders JE, Zhang XY, Thomas WD, Nguyen T, Hersey P: The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol 166: 5337–5345, 2001

    Google Scholar 

  54. Nguyen T, Zhang XD, Hersey P: Relative resistance of fresh isolates of melanoma to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Clin Cancer Res 7: 966s–973s, 2001

    Google Scholar 

  55. Vargas DA, Takahashi S, Ronai Z: Mdm2: A regulator of cell growth and death. Adv Cancer Res 89: 1–34, 2003

    Google Scholar 

  56. Yang Y, Li CC, Weissman AM: Regulating the p53 system through ubiquitination. Oncogene 23: 2096–2106, 2004

    Google Scholar 

  57. Polsky D, Bastian BC, Hazan C, Melzer K, Pack J, Houghton A, Busam K, Cordon-Cardo C, Osman I: HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cutaneous melanoma. Cancer Res 61: 7642–7646, 2001

    Google Scholar 

  58. Polsky D, Melzer K, Hazan C, Panageas KS, Busam K, Drobnjak M, Kamino H, Spira JG, Kopf AW, Houghton A, Cordon-Cardo C, Osman I: HDM2 protein overexpression and prognosis in primary malignant melanoma. J Natl Cancer Inst 94: 1803–1806, 2002

    Google Scholar 

  59. Martin SJ: Destabilizing influences in apoptosis: Sowing the seeds of IAP destruction. Cell 109: 793–796, 2002

    Google Scholar 

  60. Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D: Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol 120: 48–55, 2003

    Google Scholar 

  61. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM: ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 10: 1359–1366, 2000

    Google Scholar 

  62. Chen Y, Kramer DL, Li F, Porter CW: Loss of inhibitor of apoptosis proteins as a determinant of polyamine analog-induced apoptosis in human melanoma cells. Oncogene 22: 4964–4972, 2003

    Google Scholar 

  63. Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S: Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: Molecular characterization of the involved signaling pathway. Mol Cell Biol 20: 1886–1896, 2000

    Google Scholar 

  64. Dimmeler S, Breitschopf K, Haendeler J, Zeiher AM: Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: A link between the apoptosome and the proteasome pathway. J Exp Med 189: 1815–1822, 1999

    Google Scholar 

  65. Smalley KS: A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 104: 527-532, 2003

    Google Scholar 

  66. Serrone L, Hersey P: The chemoresistance of human malignant melanoma: An update. Melanoma Res 9: 51–58, 1999

    Google Scholar 

  67. Soengas MS, Lowe SW: Apoptosis and melanoma chemoresistance. Oncogene 22: 3138–3151, 2003

    Google Scholar 

  68. Ivanov VN, Bhoumik A, Ronai Z: Death receptors and melanoma resistance to apoptosis. Oncogene 22: 3152–3161, 2003

    Google Scholar 

  69. Fuchs SY, Spiegelman VS, Kumar KG: The many faces of beta-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer. Oncogene 23: 2028–2036, 2004

    Google Scholar 

  70. Madrid LV, Baldwin AS, Jr: Regulation of NF-kappaB by oncoproteins and tumor suppressor proteins. Methods Mol Biol 223: 523–532, 2003

    Google Scholar 

  71. Tuveson DA, Weber BL, Herlyn M: BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell 4: 95–98, 2003

    Google Scholar 

  72. Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE, Herlyn M: Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63: 756–759, 2003

    Google Scholar 

  73. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z, Aaronson SA: BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 63: 3883–3885, 2003

    Google Scholar 

  74. Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M, Tuveson DA: Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res 63: 5198–5202, 2003

    Google Scholar 

  75. Dhawan P, Richmond A: A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277: 7920–7928, 2002

    Google Scholar 

  76. Yang J, Richmond A: Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells. Cancer Res 61: 4901–4909, 2001

    Google Scholar 

  77. Chawla-Sarkar M, Bauer JA, Lupica JA, Morrison BH, Tang Z, Oates RK, Almasan A, DiDonato JA, Borden EC, Lindner DJ: Suppression of NF-kappa B survival signaling by nitrosylcobalamin sensitizes neoplasms to the anti-tumor effects of Apo2L/TRAIL. J Biol Chem 278: 39461–39469, 2003

    Google Scholar 

  78. Ivanov VN, Fodstad O, Ronai Z: Expression of ring finger-deleted TRAF2 sensitizes metastatic melanoma cells to apoptosis via up-regulation of p38, TNFalpha and suppression of NF-kappaB activities. Oncogene 20: 2243–2253, 2001

    Google Scholar 

  79. Soldatenkov VA, Dritschilo A, Ronai Z, Fuchs SY: Inhibition of homologue of Slimb (HOS) function sensitizes human melanoma cells for apoptosis. Cancer Res 59: 5085–5088, 1999

    Google Scholar 

  80. Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M: Function and regulation of melanoma-stromal fibroblast interactions: When seeds meet soil. Oncogene 22: 3162–3171, 2003

    Google Scholar 

  81. Pawlik TM, Sondak VK: Malignant melanoma: Current state of primary and adjuvant treatment. Crit Rev Oncol Hematol 45: 245–264, 2003

    Google Scholar 

  82. Eggermont AM: Critical appraisal of IFN-alpha-based adjuvant therapy in stage II-III malignant melanoma. Expert Rev Anticancer Ther 2: 563–569, 2002

    Google Scholar 

  83. Kumar KG, Tang W, Ravindranath AK, Clark WA, Croze E, Fuchs SY: SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. Embo J 22: 5480–5490, 2003

    Google Scholar 

  84. Marmor MD, Yarden Y: Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23: 2057–2070, 2004

    Google Scholar 

  85. Morin PJ: Beta-catenin signaling and cancer. Bioessays 21: 1021–1030, 1999

    Google Scholar 

  86. Barker N, Morin PJ, Clevers H: The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 77: 1–24, 2000

    Google Scholar 

  87. Polakis P: Wnt signaling and cancer. Genes Dev 14: 1837–1851, 2000

    Google Scholar 

  88. Polakis P: The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9: 15–21, 1999

    Google Scholar 

  89. Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA: A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 183: 1185–1192, 1996

    Google Scholar 

  90. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275: 1790–1792, 1997

    Google Scholar 

  91. Omholt K, Platz A, Ringborg U, Hansson J: Cytoplasmic and nuclear accumulation of beta-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int J Cancer 92: 839–842, 2001

    Google Scholar 

  92. Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER: Frequent nuclear/cytoplasmic localization of beta-catenin without exon 3 mutations in malignant melanoma. Am J Pathol 154: 325–329, 1999

    Google Scholar 

  93. Worm J, Christensen C, Gronbaek K, Tulchinsky E, Guldberg P: Genetic and epigenetic alterations of the APC gene in malignant melanoma. Oncogene, 2004

  94. Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL, White RL, Matsunami N: Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7: 927–936, 2001

    Google Scholar 

  95. Matsuzawa SI, Reed JC: Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7: 915–926, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Y. Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, S.Y. De-regulation of ubiquitin-dependent proteolysis and the pathogenesis of malignant melanoma. Cancer Metastasis Rev 24, 329–338 (2005). https://doi.org/10.1007/s10555-005-1581-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-005-1581-0

Key words

Navigation