Skip to main content
Log in

Value of territorial work efficiency estimation in non-ST-segment-elevation acute coronary syndrome: a study with non-invasive left ventricular pressure–strain loops

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Non-ST-segment-elevation acute coronary syndrome (NSTE-ACS) patients with normal left ventricular (LV) ejection fraction (LVEF) and wall motion require a non-invasive tool to detect LV risk areas. This study utilized non-invasive LV pressure–strain loops to evaluate territorial myocardial work efficiency (WE) for identifying obstructive coronary artery stenosis, in patients with non-obstructive or obstructive coronary artery stenosis NSTE-ACS, the latter with or without occlusion. Global and territorial longitudinal strain (LS) analyses were performed via speckle-tracking imaging before coronary angiography. LV pressure–strain loops estimated global and territorial myocardial work index (MWI), constructive work (CW), wasted work (WW), and WE. Receiver operating characteristic curve analysis was used to determine the optimal cutoff value of independent parameters to detect obstructive coronary artery stenosis. Compared with non-obstructive, obstructive coronary artery stenosis showed significantly lower global and territorial LS, MWI, CW, and WE, and higher WW. Territorial LS, MWI, CW, and WE were significantly worse in territories of coronary occlusion. Territorial WE was the best parameter for predicting obstructive coronary artery stenosis (AUC 0.80, cutoff < 96%, sensitivity 73%, specificity 70%, P < 0.001). In patients with NSTE-ACS with normal wall motion and LVEF, territorial WE is more accurate than territorial LS or MWI to identify LV risk areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data and material that support the findings of this study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Yang Q, Wang Y, Liu J, Liu J, Hao Y, Smith SJ, Huo Y et al (2017) Invasive management strategies and antithrombotic treatments in patients with non-ST-segment-elevation acute coronary syndrome in China: findings from the improving CCC project (care for cardiovascular disease in China). Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004750

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rodriguez F, Mahaffey KW (2016) Management of patients with NSTE-ACS: a comparison of the recent AHA/ACC and ESC guidelines. J Am Coll Cardiol 68:313–321. https://doi.org/10.1016/j.jacc.2016.03.599

    Article  PubMed  Google Scholar 

  3. Jobs A, Mehta SR, Montalescot G, Vicaut E, Van’T HA, Badings EA, Neumann FJ et al (2017) Optimal timing of an invasive strategy in patients with non-ST-elevation acute coronary syndrome: a meta-analysis of randomised trials. Lancet 390:737–746. https://doi.org/10.1016/S0140-6736(17)31490-3

    Article  PubMed  Google Scholar 

  4. Smulders MW, Kietselaer B, Wildberger JE, Dagnelie PC, Brunner-La RH, Mingels A, van Cauteren Y et al (2019) Initial imaging-guided strategy versus routine care in patients with non-ST-segment elevation myocardial infarction. J Am Coll Cardiol 74:2466–2477. https://doi.org/10.1016/j.jacc.2019.09.027

    Article  PubMed  Google Scholar 

  5. Kofoed KF, Kelbaek H, Hansen PR, Torp-Pedersen C, Hofsten D, Klovgaard L, Holmvang L et al (2018) Early versus standard care invasive examination and treatment of patients with non-ST-segment elevation acute coronary syndrome. Circulation 138:2741–2750. https://doi.org/10.1161/CIRCULATIONAHA.118.037152

    Article  PubMed  Google Scholar 

  6. Dahlslett T, Karlsen S, Grenne B, Eek C, Sjøli B, Skulstad H, Smiseth OA et al (2014) Early assessment of strain echocardiography can accurately exclude significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary syndrome. J Am Soc Echocardiogr 27:512–519. https://doi.org/10.1016/j.echo.2014.01.019

    Article  PubMed  Google Scholar 

  7. Atici A, Barman HA, Durmaz E, Demir K, Cakmak R, Tugrul S, Elitok A et al (2019) Predictive value of global and territorial longitudinal strain imaging in detecting significant coronary artery disease in patients with myocardial infarction without persistent ST-segment elevation. Echocardiography 36:512–520. https://doi.org/10.1111/echo.14275

    Article  PubMed  Google Scholar 

  8. Brainin P, Haahr Pedersen S, Olsen FJ, Holm AE, Fritz Hansen T, Jespersen T, Gislason G et al (2020) Early systolic lengthening in patients with ST-segment-elevation myocardial infarction: a novel predictor of cardiovascular events. J Am Heart Assoc. https://doi.org/10.1161/JAHA.119.013835

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liou K, Negishi K, Ho S, Russell EA, Cranney G, Ooi SY (2016) Detection of obstructive coronary artery disease using peak systolic global longitudinal strain derived by two-dimensional speckle-tracking: a systematic review and meta-analysis. J Am Soc Echocardiogr 29:724–735. https://doi.org/10.1016/j.echo.2016.03.002

    Article  PubMed  Google Scholar 

  10. Shiran A, Blondheim DS, Shimoni S, Jabarren M, Rosenmann D, Sagie A, Leibowitz D et al (2017) Two-dimensional strain echocardiography for diagnosing chest pain in the emergency room: a multicentre prospective study by the Israeli echo research group. Eur Heart J Cardiovasc Imaging 18:1016–1024. https://doi.org/10.1093/ehjci/jew168

    Article  PubMed  Google Scholar 

  11. Shiran A, Blondheim DS, Shimoni S, Jabarren M, Rosenmann D, Sagie A, Leibowitz D et al (2019) Effect of image quality on accuracy of two-dimensional strain echocardiography for diagnosing ischemic chest pain: a 2DSPER multicenter trial substudy. Int J Cardiovasc Imaging 35:617–625. https://doi.org/10.1007/s10554-018-1495-x

    Article  PubMed  Google Scholar 

  12. Edvardsen T, Urheim S, Skulstad H, Steine K, Ihlen H, Smiseth OA (2002) Quantification of left ventricular systolic function by tissue Doppler echocardiography: added value of measuring pre- and postejection velocities in ischemic myocardium. Circulation 105:2071–2077. https://doi.org/10.1161/01.cir.0000014614.63980.ba

    Article  PubMed  Google Scholar 

  13. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2016) Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 37:1196–1207. https://doi.org/10.1093/eurheartj/ehv529

    Article  PubMed  Google Scholar 

  14. Voigt JU, Cvijic M (2019) 2- and 3-Dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging 12:1849–1863. https://doi.org/10.1016/j.jcmg.2019.01.044

    Article  PubMed  Google Scholar 

  15. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, Haugaa KH et al (2012) A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a non-invasive index of myocardial work. Eur Heart J 33:724–733. https://doi.org/10.1093/eurheartj/ehs016

    Article  PubMed  PubMed Central  Google Scholar 

  16. Duchenne J, Turco A, Ünlü S, Pagourelias ED, Vunckx K, Degtiarova G, Bézy S et al (2019) Left ventricular remodeling results in homogenization of myocardial work distribution. Circ Arrhythm Electrophysiol 12:e7224. https://doi.org/10.1161/CIRCEP.118.007224

    Article  CAS  Google Scholar 

  17. Clemmensen TS, Soerensen J, Hansson NH, Tolbod LP, Harms HJ, Eiskjær H, Mikkelsen F et al (2018) Myocardial oxygen consumption and efficiency in patients with cardiac amyloidosis. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.009974

    Article  PubMed  PubMed Central  Google Scholar 

  18. El Mahdiui MM, van der Bijl PMCM, Abou RM, Ajmone Marsan NMP, Delgado VMP, Bax JJMP (2019) Global left ventricular myocardial work efficiency in healthy individuals and patients with cardiovascular disease. J Am Soc Echocardiogr 32:1120–1127. https://doi.org/10.1016/j.echo.2019.05.002

    Article  PubMed  Google Scholar 

  19. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ et al (2016) 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 37:267–315. https://doi.org/10.1093/eurheartj/ehv320

    Article  CAS  PubMed  Google Scholar 

  20. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  21. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, Horton K et al (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 32:1–64. https://doi.org/10.1016/j.echo.2018.06.004

    Article  PubMed  Google Scholar 

  22. Nagueh SF, Smiseth OA, Appleton CP, Byrd BR, Dokainish H, Edvardsen T, Flachskampf FA et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  23. Skulstad H, Edvardsen T, Urheim S, Rabben SI, Stugaard M, Lyseggen E, Ihlen H et al (2002) Postsystolic shortening in ischemic myocardium: active contraction or passive recoil? Circulation 106:718–724. https://doi.org/10.1161/01.cir.0000024102.55150.b6

    Article  PubMed  Google Scholar 

  24. Boe E, Russell K, Eek C, Eriksen M, Remme EW, Smiseth OA, Skulstad H (2015) Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. Eur Heart J Cardiovasc Imaging 16:1247–1255. https://doi.org/10.1093/ehjci/jev078

    Article  PubMed  Google Scholar 

  25. Edwards NFA, Scalia GM, Shiino K, Sabapathy S, Anderson B, Chamberlain R, Khandheria BK et al (2019) Global myocardial work is superior to global longitudinal strain to predict significant coronary artery disease in patients with normal left ventricular function and wall motion. J Am Soc Echocardiogr 32:947–957. https://doi.org/10.1016/j.echo.2019.02.014

    Article  PubMed  Google Scholar 

  26. Eek C, Grenne B, Brunvand H, Aakhus S, Endresen K, Smiseth OA, Edvardsen T et al (2010) Strain echocardiography predicts acute coronary occlusion in patients with non-ST-segment elevation acute coronary syndrome. Eur J Echocardiogr 11:501–508. https://doi.org/10.1093/ejechocard/jeq008

    Article  PubMed  Google Scholar 

  27. Chan J, Edwards NFA, Khandheria BK, Shiino K, Sabapathy S, Anderson B, Chamberlain R et al (2019) A new approach to assess myocardial work by non-invasive left ventricular pressure–strain relations in hypertension and dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 20:31–39. https://doi.org/10.1093/ehjci/jey131

    Article  PubMed  Google Scholar 

  28. Sörensen J, Harms HJ, Aalen JM, Baron T, Smiseth OA, Flachskampf FA (2019) Myocardial efficiency: a fundamental physiological concept on the verge of clinical impact. JACC Cardiovasc Imaging 13:1564–1576. https://doi.org/10.1016/j.jcmg.2019.08.030

    Article  PubMed  Google Scholar 

  29. Gabr RE, El-Sharkawy AM, Schär M, Panjrath GS, Gerstenblith G, Weiss RG, Bottomley PA (2018) Cardiac work is related to creatine kinase energy supply in human heart failure: a cardiovascular magnetic resonance spectroscopy study. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-018-0491-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. D’Andrea A, Radmilovic J, Carbone A, Mandoli GE, Santoro C, Evola V, Bandera F et al (2020) Speckle tracking evaluation in endurance athletes: the “optimal” myocardial work. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-020-01871-z

    Article  PubMed  Google Scholar 

  31. Lyseggen E, Skulstad H, Helle-Valle T, Vartdal T, Urheim S, Rabben SI, Opdahl A et al (2005) Myocardial strain analysis in acute coronary occlusion. Circulation 112:3901–3910. https://doi.org/10.1161/CIRCULATIONAHA.105.533372

    Article  PubMed  Google Scholar 

  32. Asanuma T, Nakatani S (2015) Myocardial ischaemia and post-systolic shortening. Heart 101:509–516. https://doi.org/10.1136/heartjnl-2013-305403

    Article  PubMed  Google Scholar 

  33. Kozuma A, Asanuma T, Masuda K, Adachi H, Minami S, Nakatani S (2019) Assessment of myocardial ischemic memory using three-dimensional speckle-tracking echocardiography: a novel integrated analysis of early systolic lengthening and postsystolic shortening. J Am Soc Echocardiogr 32:1477–1486. https://doi.org/10.1016/j.echo.2019.06.013

    Article  PubMed  Google Scholar 

  34. Zahid W, Eek CH, Remme EW, Skulstad H, Fosse E, Edvardsen T (2014) Early systolic lengthening may identify minimal myocardial damage in patients with non-ST-elevation acute coronary syndrome. Eur Heart J Cardiovasc Imaging 15:1152–1160. https://doi.org/10.1093/ehjci/jeu101

    Article  PubMed  Google Scholar 

  35. Manganaro R, Marchetta S, Dulgheru R, Sugimoto T, Tsugu T, Ilardi F, Cicenia M et al (2019) Correlation between non-invasive myocardial work indices and main parameters of systolic and diastolic function: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jez203

    Article  PubMed  Google Scholar 

  36. Urheim S, Rabben SI, Skulstad H, Lyseggen E, Ihlen H, Smiseth OA (2005) Regional myocardial work by strain Doppler echocardiography and LV pressure: a new method for quantifying myocardial function. Am J Physiol Heart Circ Physiol 288:H2375–H2380. https://doi.org/10.1152/ajpheart.00946.2004

    Article  CAS  PubMed  Google Scholar 

  37. Hubert A, Le Rolle V, Leclercq C, Galli E, Samset E, Casset C, Mabo P et al (2018) Estimation of myocardial work from pressure–strain loops analysis: an experimental evaluation. Eur Heart J Cardiovasc Imaging 19:1372–1379. https://doi.org/10.1093/ehjci/jey024

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all subjects for their participation and other colleagues for their support.

Funding

Beijing Municipal Administration of Hospitals Incubating Program (No. XMLX201827).

Author information

Authors and Affiliations

Authors

Contributions

XZL and QZC designed the experiment; YYQ, XYD, DCG, and WWZ recruited patients; YYQ, XPW, JTW, and ZJ analyzed data; YYQ wrote the paper; and XZL, QZC, XPW, and YDL revised it.

Corresponding authors

Correspondence to QiZhe Cai or XiuZhang Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the local ethics committee. All procedures involving human participants were performed in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki declaration and its later amendments, or comparable ethical standards.

Consent to participate

Written informed consent was obtained from each individual participant included in the study.

Consent for publication

All authors have read and approved the content, and agree to submit it for consideration for publication in your journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Wu, X., Wang, J. et al. Value of territorial work efficiency estimation in non-ST-segment-elevation acute coronary syndrome: a study with non-invasive left ventricular pressure–strain loops. Int J Cardiovasc Imaging 37, 1255–1265 (2021). https://doi.org/10.1007/s10554-020-02110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-02110-1

Keywords

Navigation