Skip to main content

Advertisement

Log in

The integrated value of sST2 and global longitudinal strain in the early stratification of patients with severe aortic valve stenosis: a translational imaging approach

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Aortic valve stenosis (AVS) is associated with significant myocardial fibrosis (MF). Global longitudinal strain (GLS) is a sensible indicator of systolic dysfunction. ST2 is a member of the interleukin (IL)-1 receptor family and a modulator of hypertrophic and fibrotic responses. We aimed at assessing: (a) the association between adverse LV remodeling, LV functional parameters (including GLS) and sST2 level. (b) The association between MF (detected by endo-myocardial biopsy) and sST2 in patients with AVS undergoing surgical valve replacement. Twenty-two patients with severe AVS and preserved EF underwent aortic valve replacement. They performed laboratory analysis, including serum ST2 (sST2), echocardiography and inter-ventricular septum biopsy to assess MF (%). We included ten controls for comparison. Compared to controls, patients showed higher sST2 levels (p < 0.0001). sST2 showed correlation with Age (r = 0.58; p = 0.0004), E/e′ average (r = 0.58; p = 0.0007), GLS (r = 0.61; p = 0.0002), LAVi (r = 0.51; p = 0.003), LVMi (r = 0.43; p = 0.01), sPAP (r = 0.36; p = 0.04) and SVi (r = −0.47; p < 0.005). No correlation was found between MF and sST2. At ROC analysis, a sST2 ≥ 284 ng/mL had the best accuracy to discriminate controls from patients with impaired GLS, i.e. GLS ≤ 17% (AUC 0.80; p = 0.003; sensitivity 95%; specificity 83%) and increased E/e′ average (AUC 0.87; p = 0.0001; sensitivity 96%; specificity 74%). At multivariate regression analysis GLS resulted the only independent predictor of sST2 levels (R2 = 0.35; p =  0.0004). Patients with severe AVS present elevated sST2 levels. LV GLS resulted the only independent predictor of sST2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AVA/AVAi:

Aortic valve area/indexed

AVS:

Aortic valve stenosis

BNP:

Brain natriuretic peptide

E/A:

Ratio of proto-diastolic E wave pulsed Doppler velocity to end-diastolic A wave

E/e′:

Ratio of protodiastolic E wave pulsed Doppler velocity to tissue Doppler proto-diastolic velocity

EF:

Ejection fraction

GLS:

Global longitudinal strain

iEDP:

Invasive end-diastolic pressure

IL:

Interleukin

LAVi:

Indexed left atrial volume

LV:

Left ventricular

LVMi:

Indexed left ventricular mass

MF:

Myocardial fibrosis

MRI:

Magnetic resonance imaging

ROI:

Region of interest

sPAP:

Systolic pulmonary artery pressure

STE:

Speckle tracking echocardiography

SVi:

Indexed stroke volume

TDI:

Tissue Doppler imaging

References

  1. Carabello BA, Paulus WJ (2009) Aortic stenosis. Lancet 373:956–966

    Article  PubMed  Google Scholar 

  2. Lancellotti P, Magne J, Donal E, Davin L, O’Connor K, Rosca M et al (2012) Clinical outcome in asymptomatic severe aortic stenosis: insights from the new proposed aortic stenosis grading classification. J Am Coll Cardiol 59:235–243

    Article  CAS  PubMed  Google Scholar 

  3. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese society of echocardiography. Eur J Echocardiogr 12:167–205

    Article  PubMed  Google Scholar 

  4. Monin JL, Lancellotti P, Monchi M, Lim P, Weiss E, Piérard L et al (2009) Risk score for predicting outcome in patients with asymptomatic aortic stenosis. Circulation 120:69–75

    Article  PubMed  Google Scholar 

  5. Lancellotti P, Dulgheru R, Magne J, Henri C, Servais L, Bouznad N et al (2015) Elevated plasma soluble sT2 is associated with heart failure symptoms and outcome in aortic stenosis. PLoS ONE 10:1–10

    Article  Google Scholar 

  6. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT (2007) IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Investig 117:1538–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J et al (2009) Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail 2:684–691

    Article  CAS  PubMed  Google Scholar 

  8. Sawada H, Naito Y, Hirotani S, Akahori H, Iwasaku T, Okuhara Y et al (2013) Expression of interleukin-33 and ST2 in nonrheumatic aortic valve stenosis. Int J Cardiol 168:529–531

    Article  PubMed  Google Scholar 

  9. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P et al (2011) High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail 4:180–187

    Article  PubMed  Google Scholar 

  10. Bartunek J, Delrue L, Van Durme F, Muller O, Casselman F, De Wiest B et al (2008) Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J Am Coll Cardiol 52:2166–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Breyley JG, Novak E, Wittenberg AM, Zajarias A, Maniar H, Damiano R et al (2014) Valvular heart disease. J Am Coll Cardiol 63:A1920

    Article  Google Scholar 

  12. deFilippi C, Daniels LB, Bayes-Genis A (2015) Structural heart disease and ST2: cross-sectional and longitudinal associations with echocardiography. Am J Cardiol 115:59B–63B

    Article  PubMed  Google Scholar 

  13. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 16:233–271

    Article  PubMed  Google Scholar 

  14. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP et al (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur J Echocardiogr 10:1–25

    Article  PubMed  Google Scholar 

  15. Di Bello V, Giorgi D, Viacava P, Enrica T, Nardi C, Palagi C et al (2004) Severe aortic stenosis and myocardial function: diagnostic and prognostic usefulness of ultrasonic integrated backscatter analysis. Circulation 110:849–855

    Article  PubMed  Google Scholar 

  16. Carabello BA (2013) How does the heart respond to aortic stenosis let me count the ways. Circ Cardiovasc Imaging 6:858–860

    Article  PubMed  Google Scholar 

  17. Ng ACT, Delgado V, Bertini M, Antoni ML, Van Bommel RJ, Van Rijnsoever EPM et al (2011) Alterations in multidirectional myocardial functions in patients with aortic stenosis and preserved ejection fraction: a two-dimensional speckle tracking analysis. Eur Heart J 32:1542–1550

    Article  PubMed  Google Scholar 

  18. Conte L, Fabiani I, Pugliese NR, Giannini C, La Carruba S, Angelillis M et al (2016) Left ventricular stiffness predicts outcome in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation. Echocardiography 25:13402

    Google Scholar 

  19. Lee S-P, Lee W, Lee JM, Park E-A, Kim H-K, Kim Y-J et al (2014) Assessment of diffuse myocardial fibrosis by using MR imaging in asymptomatic patients with aortic stenosis. Radiology 274:141120

    Google Scholar 

  20. Herrmann S, Niemann M, Stork S, Hu K, Voelker W, Ertl G et al (2013) Low flow/low gradient aortic valve stenosis: clinical and diagnostic management. Herz 38:261–268

    Article  CAS  PubMed  Google Scholar 

  21. Herrmann S, Störk S, Niemann M, Lange V, Strotmann JM, Frantz S et al (2011) Low-gradient aortic valve stenosis. J Am Coll Cardiol 58:402–412

    Article  PubMed  Google Scholar 

  22. Fabiani I, Scatena C, Mazzanti CM, Conte L, Pugliese NR, Franceschi S et al (2016) Micro-RNA-21 (biomarker) and global longitudinal strain (functional marker) in detection of myocardial fibrotic burden in severe aortic valve stenosis: a pilot study. J Transl Med 14:1–11

    Article  Google Scholar 

Download references

Funding

Blood assays performed using PRA (Progetti Ricerca Ateneo-Università di Pisa) 2016 funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Calogero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Research involving human and animal rights

No animal studies were carried out by the authors for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabiani, I., Conte, L., Pugliese, N.R. et al. The integrated value of sST2 and global longitudinal strain in the early stratification of patients with severe aortic valve stenosis: a translational imaging approach. Int J Cardiovasc Imaging 33, 1915–1920 (2017). https://doi.org/10.1007/s10554-017-1203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-017-1203-2

Keywords

Navigation