Skip to main content
Log in

The ratio of epicardial to body fat improves the prediction of coronary artery disease beyond calcium and Framingham risk scores

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The association between epicardial fat and coronary artery disease (CAD) might be affected by general adiposity. We aimed to determine whether the percentage of epicardial adipose tissue (%EAT), defined as the mass ratio of epicardial fat to body fat, could improve prediction of asymptomatic CAD. We consecutively enrolled 846 adults who underwent coronary computed tomography angiography as part of a health check-up and assessed their coronary stenosis severity and epicardial fat mass. Body fat mass was measured by bioelectrical impedance analysis. Subjects with CAD history, hyperthyroidism, pitting edema, or subjects taking diuretics or thiazolidinedione were excluded. Obstructive CAD was defined as at least one coronary artery with 50 % or greater obstruction, and severe CAD was defined as 70 % or greater obstruction. The %EAT had the maximum area under the curve for predicting the presence of CAD and superior discriminative performance to EAT and other EAT-indexed parameters. Multivariable logistic regression analysis revealed that %EAT >0.41 % was a predictor of obstructive CAD [odds ratio 3.59 (95 % confidence interval 2.28–5.64)], and %EAT >0.47 % was a predictor of severe CAD [4.01 (2.01–7.99)] after adjustment for calcium score and Framingham risk score. This prediction was more pronounced in subjects with higher body fat percentage (≥25 % for men and ≥35 % for women), Framingham risk score (≥10 %), or calcium score (≥100). A spillover of body fat at epicardium over a critical threshold is associated with significant coronary stenosis. This association was independent of obesity, coronary calcium burden, and Framingham risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mazurek T, Kiliszek M, Kobylecka M, Skubisz-Gluchowska J, Kochman J, Filipiak K, Krolicki L, Opolski G (2014) Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol 113(9):1505–1508

    Article  PubMed  Google Scholar 

  2. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117(5):605–613

    Article  PubMed  Google Scholar 

  3. Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P (2010) Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210(1):150–154

    Article  CAS  PubMed  Google Scholar 

  4. Psaltis PJ, Talman AH, Munnur K, Cameron JD, Ko BS, Meredith IT, Seneviratne SK, Wong DT (2016) Relationship between epicardial fat and quantitative coronary artery plaque progression: insights from computer tomography coronary angiography. Int J Cardiovasc Imaging 32(2):317–328

    Article  PubMed  Google Scholar 

  5. Tanami Y, Jinzaki M, Kishi S, Matheson M, Vavere AL, Rochitte CE, Dewey M, Chen MY, Clouse ME, Cox C, Kuribayashi S, Lima JA, Arbab-Zadeh A (2015) Lack of association between epicardial fat volume and extent of coronary artery calcification, severity of coronary artery disease, or presence of myocardial perfusion abnormalities in a diverse, symptomatic patient population: results from the CORE320 multicenter study. Circ Cardiovasc Imaging 8(3):e002676

    Article  PubMed  PubMed Central  Google Scholar 

  6. Silaghi A, Piercecchi-Marti MD, Grino M, Leonetti G, Alessi MC, Clement K, Dadoun F, Dutour A (2008) Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring) 16(11):2424–2430

    Article  Google Scholar 

  7. Gorter PM, de Vos AM, van der Graaf Y, Stella PR, Doevendans PA, Meijs MF, Prokop M, Visseren FL (2008) Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol 102(4):380–385

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto H, Kitagawa T, Kunita E, Tshushima H, Tatsugami F, Awai K, Kihara Y (2015) Accumulation of epicardial adipose tissue increases coronary morbidity in non-obese patients with suspected coronary artery disease. IJC Metab Endocr 8:7–12

    Article  Google Scholar 

  9. Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, Ouyang P, Espeland MA, Lohman KK, Criqui MH, Allison M, Bluemke DA, Carr JJ (2009) The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90(3):499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahabadi AA, Berg MH, Lehmann N, Kalsch H, Bauer M, Kara K, Dragano N, Moebus S, Jockel KH, Erbel R, Mohlenkamp S (2013) Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf Recall Study. J Am Coll Cardiol 61(13):1388–1395

    Article  PubMed  Google Scholar 

  11. Gomez-Ambrosi J, Silva C, Galofre JC, Escalada J, Santos S, Millan D, Vila N, Ibanez P, Gil MJ, Valenti V, Rotellar F, Ramirez B, Salvador J, Fruhbeck G (2012) Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes (Lond) 36(2):286–294

    Article  CAS  Google Scholar 

  12. Lahmann PH, Lissner L, Gullberg B, Berglund G (2002) A prospective study of adiposity and all-cause mortality: the Malmo Diet and Cancer Study. Obes Res 10(5):361–369

    Article  PubMed  Google Scholar 

  13. Bigaard J, Frederiksen K, Tjonneland A, Thomsen BL, Overvad K, Heitmann BL, Sorensen TI (2004) Body fat and fat-free mass and all-cause mortality. Obes Res 12(7):1042–1049

    Article  PubMed  Google Scholar 

  14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  PubMed  Google Scholar 

  15. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847

    Article  CAS  PubMed  Google Scholar 

  16. Cho YG, Kang JH, Kim KA (2007) Comparison of bioelectrical impedance analysis with dual energy X-ray absorptiometry in obese women. Korean J Obes 16(2):50–57

    Google Scholar 

  17. Chien KL, Lin HJ, Lee BC, Hsu HC, Chen MF (2011) Relationship of adiposity and body composition to the status of metabolic syndrome among ethnic Chinese Taiwanese. Nutr Metab Cardiovasc Dis 21(9):643–650

    Article  PubMed  Google Scholar 

  18. Leipsic J, Abbara S, Achenbach S, Cury R, Earls JP, Mancini GJ, Nieman K, Pontone G, Raff GL (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8(5):342–358

    Article  PubMed  Google Scholar 

  19. Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, Lippolis NJ, Berman DS, Callister TQ (2007) Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 50(12):1161–1170

    Article  PubMed  Google Scholar 

  20. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, Imielinska C, Ross R, Heymsfield SB (2003) Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11(1):5–16

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thomas EL, Saeed N, Hajnal JV, Brynes A, Goldstone AP, Frost G, Bell JD (1998) Magnetic resonance imaging of total body fat. J Appl Physiol (1985) 85(5):1778–1785

    CAS  PubMed  Google Scholar 

  22. Wildman RP, Janssen I, Khan UI, Thurston R, Barinas-Mitchell E, El Khoudary SR, Everson-Rose SA, Kazlauskaite R, Matthews KA, Sutton-Tyrrell K (2011) Subcutaneous adipose tissue in relation to subclinical atherosclerosis and cardiometabolic risk factors in midlife women. Am J Clin Nutr 93(4):719–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harada K, Amano T, Uetani T, Yoshida T, Kato B, Kato M, Marui N, Kumagai S, Ando H, Ishii H, Matsubara T, Murohara T (2013) Association of inflammatory markers with the morphology and extent of coronary plaque as evaluated by 64-slice multidetector computed tomography in patients with stable coronary artery disease. Int J Cardiovasc Imaging 29(5):1149–1158

    Article  PubMed  Google Scholar 

  24. Mahabadi AA, Lehmann N, Kalsch H, Robens T, Bauer M, Dykun I, Budde T, Moebus S, Jockel KH, Erbel R, Mohlenkamp S (2014) Association of epicardial adipose tissue with progression of coronary artery calcification is more pronounced in the early phase of atherosclerosis: results from the Heinz Nixdorf recall study. JACC Cardiovasc Imaging 7(9):909–916

    Article  PubMed  Google Scholar 

  25. Ueno K, Anzai T, Jinzaki M, Yamada M, Jo Y, Maekawa Y, Kawamura A, Yoshikawa T, Tanami Y, Sato K, Kuribayashi S, Ogawa S (2009) Increased epicardial fat volume quantified by 64-multidetector computed tomography is associated with coronary atherosclerosis and totally occlusive lesions. Circ J 73(10):1927–1933

    Article  PubMed  Google Scholar 

  26. Nakazato R, Dey D, Cheng VY, Gransar H, Slomka PJ, Hayes SW, Thomson LE, Friedman JD, Min JK, Berman DS (2012) Epicardial fat volume and concurrent presence of both myocardial ischemia and obstructive coronary artery disease. Atherosclerosis 221(2):422–426

    Article  CAS  PubMed  Google Scholar 

  27. Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, Wolford D, Samaha J (2011) Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 34(3):730–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochelliere R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EM, Investigators P (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299(13):1561–1573

    Article  CAS  PubMed  Google Scholar 

  29. McKenney ML, Schultz KA, Boyd JH, Byrd JP, Alloosh M, Teague SD, Arce-Esquivel AA, Fain JN, Laughlin MH, Sacks HS, Sturek M (2014) Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 9:2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Iacobellis G, Singh N, Wharton S, Sharma AM (2008) Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity (Silver Spring) 16(7):1693–1697

    Article  Google Scholar 

  31. Hou Y, Xu S, Guo W, Vembar M, Guo Q (2012) The optimal dose reduction level using iterative reconstruction with prospective ECG-triggered coronary CTA using 256-slice MDCT. Eur J Radiol 81(12):3905–3911

    Article  PubMed  Google Scholar 

  32. Raff GL (2010) Radiation dose from coronary CT angiography: five years of progress. J Cardiovasc Comput Tomogr 4(6):365–374

    Article  PubMed  Google Scholar 

  33. Ding X, Terzopoulos D, Diaz-Zamudio M, Berman DS, Slomka PJ, Dey D (2015) Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT. Med Phys 42(9):5015–5026

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the National Taiwan University Hospital (NTUH.100-S1611) and Ministry of Science and Technology (MOST 104-2221-E-002-208). The authors thank the staff of the Health Management Center in National Taiwan University Hospital for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Fong Chen.

Ethics declarations

Conflict of interest

None declared.

Additional information

B.-C. Lee and W.-J. Lee have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BC., Lee, WJ., Lo, SC. et al. The ratio of epicardial to body fat improves the prediction of coronary artery disease beyond calcium and Framingham risk scores. Int J Cardiovasc Imaging 32 (Suppl 1), 117–127 (2016). https://doi.org/10.1007/s10554-016-0912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0912-2

Keywords

Navigation