Skip to main content
Log in

Epicardial myocardial strain abnormalities may identify the earliest stages of arrhythmogenic cardiomyopathy

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this cohort study was to evaluate the value of echocardiographic multilayer strain analysis in the identification of arrhythmogenic cardiomyopathy (AC) in its earliest stages in which sudden cardiac death can occurs. Twenty seven asymptomatic relatives of AC probands (mean age 39.6 ± 19.5 years, 37 % male) with a desmosomal pathogenic mutation but no additional criteria for AC (group II) were compared to age and sex-matched healthy controls (group I). In addition, 70 patients harboring a pathogenic desmosomal mutation with “definitive” diagnosis of AC (group IV), and 19 subjects with “borderline” diagnosis (group III) were also studied. A standard echocardiographic evaluation plus left (LV) and right ventricular global and regional transmural, endocardial, and epicardial longitudinal strain (LS) analysis, was performed. In group II, while LV ejection fraction, fractional shortening, and S′ were not significantly reduced compared to controls, transmural global LS was significantly reduced to 19.3 ± 1.8 % in group II versus 20.9 ± 1.1 % in controls (p = 0.0003). Compared to controls, group II presented significant (p < 0.05) regional LS decrease in the basal infero-lateral, antero-lateral, latero-apical, infero-septal, and septo-apical segments. Moreover, LS of the latero-apical and the basal antero-lateral segments was significantly altered in the epicardium (p < 0.05) but not significantly in the endocardium. Global and regional LV LS analysis allows detection of AC in an early or non-diagnostic stage of the disease. Moreover, epicardial LS analysis allows the detection of abnormalities earlier than endocardial LS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Arrhythmogenic cardiomyopathy

CMR:

Cardiovascular magnetic resonance

EF:

Ejection fraction

LV:

Left ventricle

LGE:

Late gadolinium enhancement

LS:

Longitudinal strain

ROC:

Receiver operating characteristics

RV:

Right ventricle

TFC:

Task Force Criteria

References

  1. Corrado D, Basso C, Thiene G, McKenna WJ, Davies MJ, Fontaliran F, Nava A, Silvestri F, Blomstrom-Lundqvist C, Wlodarska EK, Fontaine G, Camerini F (1997) Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 30:1512–1520

    Article  CAS  PubMed  Google Scholar 

  2. Thiene G, Nava A, Corrado D, Rossi L, Pennelli N (1988) Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med 318:129–133

    Article  CAS  PubMed  Google Scholar 

  3. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, Calkins H, Corrado D, Cox MG, Daubert JP, Fontaine G, Gear K, Hauer R, Nava A, Picard MH, Protonotarios N, Saffitz JE, Sanborn DM, Steinberg JS, Tandri H, Thiene G, Towbin JA, Tsatsopoulou A, Wichter T, Zareba W (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121:1533–1541

    Article  PubMed  PubMed Central  Google Scholar 

  4. Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, Lafitte S (2006) Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1175–1181

    Article  PubMed  Google Scholar 

  5. Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, Schellberg D, Zugck C, Galuschky C, Giannitsis E, Hegenbart U, Ho AD, Katus HA, Schonland SO, Hardt SE (2012) Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol 60:1067–1076

    Article  PubMed  Google Scholar 

  6. Lafitte S, Perlant M, Reant P, Serri K, Douard H, DeMaria A, Roudaut R (2009) Impact of impaired myocardial deformations on exercise tolerance and prognosis in patients with asymptomatic aortic stenosis. Eur J Echocardiogr 10:414–419

    Article  PubMed  Google Scholar 

  7. Ishizu T, Seo Y, Enomoto Y, Sugimori H, Yamamoto M, Machino T, Kawamura R, Aonuma K (2010) Experimental validation of left ventricular transmural strain gradient with echocardiographic two-dimensional speckle tracking imaging. Eur J Echocardiogr 11:377–385

    Article  PubMed  Google Scholar 

  8. Leitman M, Lysiansky M, Lysyansky P, Friedman Z, Tyomkin V, Fuchs T, Adam D, Krakover R, Vered Z (2010) Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr 23:64–70

    Article  PubMed  Google Scholar 

  9. Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R (2009) Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. Eur J Echocardiogr 10:303–308

    Article  PubMed  Google Scholar 

  10. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  11. Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, Morehead A, Kitzman D, Oh J, Quinones M, Schiller NB, Stein JH, Weissman NJ, American Society of Echocardiography (2004) American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr 17:1086–1119

    PubMed  Google Scholar 

  12. Foale R, Nihoyannopoulos P, McKenna W, Kleinebenne A, Nadazdin A, Rowland E, Smith G (1986) Echocardiographic measurement of the normal adult right ventricle. Br Heart J 56:33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  14. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17:1021–1029

    Article  PubMed  Google Scholar 

  15. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized Protocols (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  16. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, STROBE Initiative (2007) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 335:806–808

    Article  Google Scholar 

  17. Horimoto M, Akino M, Takenaka T, Igarashi K, Inoue H, Kawakami Y (2000) Evolution of left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy. Cardiology 93:197–200

    Article  CAS  PubMed  Google Scholar 

  18. Tandri H, Saranathan M, Rodriguez ER, Martinez C, Bomma C, Nasir K, Rosen B, Lima JA, Calkins H, Bluemke DA (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45:98–103

    Article  PubMed  Google Scholar 

  19. Marra MP, Leoni L, Bauce B, Corbetti F, Zorzi A, Migliore F, Silvano M, Rigato I, Tona F, Tarantini G, Cacciavillani L, Basso C, Buja G, Thiene G, Iliceto S, Corrado D (2012) Imaging study of ventricular scar in arrhythmogenic right ventricular cardiomyopathy: comparison of 3D standard electroanatomical voltage mapping and contrast-enhanced cardiac magnetic resonance. Circ Arrhythm Electrophysiol 5:91–100

    Article  PubMed  Google Scholar 

  20. Sen-Chowdhry S, Prasad SK, Syrris P, Wage R, Ward D, Merrifield R, Smith GC, Firmin DN, Pennell DJ, McKenna WJ (2006) Cardiovascular magnetic resonance in arrhythmogenic right ventricular cardiomyopathy revisited: comparison with task force criteria and genotype. J Am Coll Cardiol 48:2132–2140

    Article  PubMed  Google Scholar 

  21. Herbots L, Kowalski M, Vanhaecke J, Hatle L, Sutherland GR (2003) Characterizing abnormal regional longitudinal function in arrhythmogenic right ventricular dysplasia. The potential clinical role of ultrasonic myocardial deformation imaging. Eur J Echocardiogr 4:101–107

    Article  CAS  PubMed  Google Scholar 

  22. Vitarelli A, Cortes Morichetti M, Capotosto L, De Cicco V, Ricci S, Caranci F, Vitarelli M (2013) Utility of strain echocardiography at rest and after stress testing in arrhythmogenic right ventricular dysplasia. Am J Cardiol 111:1344–1350

    Article  PubMed  Google Scholar 

  23. Teske AJ, Cox MG, De Boeck BW, Doevendans PA, Hauer RN, Cramer MJ (2009) Echocardiographic tissue deformation imaging quantifies abnormal regional right ventricular function in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Soc Echocardiogr 22:920–927

    Article  PubMed  Google Scholar 

  24. Teske AJ, Cox MG, Te Riele AS, De Boeck BW, Doevendans PA, Hauer RN, Cramer MJ (2012) Early detection of regional functional abnormalities in asymptomatic ARVD/C gene carriers. J Am Soc Echocardiogr 25:997–1006

    Article  PubMed  Google Scholar 

  25. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270

    Article  PubMed  Google Scholar 

  26. Peyrou J, Parsaï C, Chauvel C, Simon M, Dehant P, Abergel E (2014) Echocardiographic assessment of right ventricular systolic function in a population of unselected patients before cardiac surgery: a multiparametric approach is necessary. Arch Cardiovasc Dis 107:529–539

    Article  PubMed  Google Scholar 

  27. Aneq MÅ, Engvall J, Brudin L, Nylander E (2012) Evaluation of right and left ventricular function using speckle tracking echocardiography in patients with arrhythmogenic right ventricular cardiomyopathy and their first degree relatives. Cardiovasc Ultrasound 10:37

    Article  PubMed  PubMed Central  Google Scholar 

  28. Risum N, Ali S, Olsen NT, Jons C, Khouri MG, Lauridsen TK, Samad Z, Velazquez EJ, Sogaard P, Kisslo J (2012) Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle tracking software in adults. J Am Soc Echocardiogr 25:1195–2003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was undertaken at University College London Hospitals/University College London, which receives a proportion of funding from the Department of Health’s NIHR Biomedical Research Centre funding scheme. Professors JCM and WJM are funded by the Higher Education Funding Council for England. Dr. PR was supported by the Fédération Francaise de Cardiologie. Dr. AH was supported by the Leiden University Medical Center. Dr. SC was funded by the 2014 ESC research grant. We thank Mrs. Shaughan Dickie and Mrs. Sarah Anderson for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Réant.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Réant, P., Hauer, A.D., Castelletti, S. et al. Epicardial myocardial strain abnormalities may identify the earliest stages of arrhythmogenic cardiomyopathy. Int J Cardiovasc Imaging 32, 593–601 (2016). https://doi.org/10.1007/s10554-015-0813-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0813-9

Keywords

Navigation