Skip to main content
Log in

Relationship between left ventricular mass and coronary artery disease in young adults: a single-center study using cardiac computed tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

We evaluated the relationship between coronary artery disease (CAD) and left ventricular mass (LVM) as measured by cardiac computed tomography (CT) in young adults ≤40 years of age. We retrospectively enrolled 490 consecutive individuals (383 males; mean age, 35.2 ± 4.4 years) who underwent cardiac CT. CAD was defined by the presence of any plaque detected by coronary CT angiography. Left ventricular (LV) function, including LVM, was automatically measured by a dedicated workstation. LVM and LVM index (LVMi) in patients with CT-detected CAD were compared to those of patients without CT-detected CAD. Logistic regression analysis was used to evaluate the relationship between cardiovascular risk factors and CAD. Fifty-five individuals had CT-detected CAD (11.2 %, 53 males). LVM measured by cardiac CT was 126.9 ± 30.0 g for males and 93.6 ± 20.9 g for females. LVM was higher (117.8 ± 30.8 vs. 133.6 ± 33.1 g, P < 0.001) in patients with CT-detected CAD compared with patients without CT-detected CAD. Obesity, hypertension, smoking, hypercholesterolemia, LVM and LVMi were predictors of CT-detected CAD. Body mass index (r = 0.237, P < 0.001) and systolic blood pressure (r = 0.281, P < 0.001) were positively correlated with LVM. In the multivariate analysis, LVM [odds ratio (OR) = 1.016] and LVMi (OR = 1.026) remained independent predictors of CAD. LVM and LVMi in patients with CT-detected CAD were higher than that of patients without CT-detected CAD. LVM and LVMi measured by cardiac CT were independent predictors of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, Laragh JH (1986) Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 105(2):173–178

    Article  CAS  PubMed  Google Scholar 

  2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566

    Article  CAS  PubMed  Google Scholar 

  3. Ghali JK, Liao Y, Simmons B, Castaner A, Cao G, Cooper RS (1992) The prognostic role of left ventricular hypertrophy in patients with or without coronary artery disease. Ann Intern Med 117(10):831–836

    Article  CAS  PubMed  Google Scholar 

  4. Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, Folsom AR (2008) The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-ethnic Study of Atherosclerosis) study. J Am Coll Cardiol 52(25):2148–2155

    Article  PubMed Central  PubMed  Google Scholar 

  5. Gardin JM, Wagenknecht LE, Anton-Culver H, Flack J, Gidding S, Kurosaki T, Wong ND, Manolio TA (1995) Relationship of cardiovascular risk factors to echocardiographic left ventricular mass in healthy young black and white adult men and women. The CARDIA study. Coronary Artery Risk Development in Young Adults. Circulation 92(3):380–387

    Article  CAS  PubMed  Google Scholar 

  6. Gardin JM, Brunner D, Schreiner PJ, Xie X, Reid CL, Ruth K, Bild DE, Gidding SS (2002) Demographics and correlates of five-year change in echocardiographic left ventricular mass in young black and white adult men and women: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Am Coll Cardiol 40(3):529–535

    Article  PubMed  Google Scholar 

  7. Lorber R, Gidding SS, Daviglus ML, Colangelo LA, Liu K, Gardin JM (2003) Influence of systolic blood pressure and body mass index on left ventricular structure in healthy African–American and white young adults: the CARDIA study. J Am Coll Cardiol 41(6):955–960

    Article  PubMed  Google Scholar 

  8. Armstrong AC, Jacobs DR Jr, Gidding SS, Colangelo LA, Gjesdal O, Lewis CE, Bibbins-Domingo K, Sidney S, Schreiner PJ, Williams OD, Goff DC Jr, Liu K, Lima JA (2014) Framingham score and LV mass predict events in young adults: CARDIA study. Int J Cardiol 172(2):350–355

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kishi S, Armstrong AC, Gidding SS, Jacobs DR Jr, Sidney S, Lewis CE, Schreiner PJ, Liu K, Lima JA (2014) Relation of left ventricular mass at age 23 to 35 years to global left ventricular systolic function 20 years later (from the Coronary Artery Risk Development in Young Adults study). Am J Cardiol 113(2):377–383

    Article  PubMed Central  PubMed  Google Scholar 

  10. Gidding SS, Carnethon MR, Daniels S, Liu K, Jacobs DR Jr, Sidney S, Gardin J (2010) Low cardiovascular risk is associated with favorable left ventricular mass, left ventricular relative wall thickness, and left atrial size: the CARDIA study. J Am Soc Echocardiogr 23(8):816–822

    Article  PubMed  Google Scholar 

  11. Heuschmid M, Rothfuss JK, Schroeder S, Fenchel M, Stauder N, Burgstahler C, Franow A, Kuzo RS, Kuettner A, Miller S, Claussen CD, Kopp AF (2006) Assessment of left ventricular myocardial function using 16-slice multidetector-row computed tomography: comparison with magnetic resonance imaging and echocardiography. Eur Radiol 16(3):551–559

    Article  PubMed  Google Scholar 

  12. Butler J, Shapiro MD, Jassal DS, Neilan TG, Nichols J, Ferencik M, Brady TJ, Hoffmann U, Cury RC (2007) Comparison of multidetector computed tomography and two-dimensional transthoracic echocardiography for left ventricular assessment in patients with heart failure. Am J Cardiol 99(2):247–249

    Article  PubMed  Google Scholar 

  13. Stolzmann P, Scheffel H, Leschka S, Schertler T, Frauenfelder T, Kaufmann PA, Marincek B, Alkadhi H (2008) Reference values for quantitative left ventricular and left atrial measurements in cardiac computed tomography. Eur Radiol 18(8):1625–1634

    Article  PubMed  Google Scholar 

  14. Madaj PM, Budoff MJ, Li D, Tayek JA, Karlsberg RP, Karpman HL (2012) Identification of noncalcified plaque in young persons with diabetes: an opportunity for early primary prevention of coronary artery disease identified with low-dose coronary computed tomographic angiography. Acad Radiol 19(7):889–893

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sayyed SH, Cassidy MM, Hadi MA (2009) Use of multidetector computed tomography for evaluation of global and regional left ventricular function. J Cardiovasc Comput Tomogr 3(1 Suppl):S23–S34

    Article  PubMed  Google Scholar 

  16. Sharma A, Einstein AJ, Vallakati A, Arbab-Zadeh A, Mukherjee D, Lichstein E (2014) Meta-analysis of global left ventricular function comparing multidetector computed tomography with cardiac magnetic resonance imaging. Am J Cardiol 113(4):731–738

    Article  PubMed  Google Scholar 

  17. Schlosser T, Mohrs OK, Magedanz A, Voigtlander T, Schmermund A, Barkhausen J (2007) Assessment of left ventricular function and mass in patients undergoing computed tomography (CT) coronary angiography using 64-detector-row CT: comparison to magnetic resonance imaging. Acta Radiol 48(1):30–35

    Article  CAS  PubMed  Google Scholar 

  18. Guo YK, Yang ZG, Ning G, Rao L, Dong L, Pen Y, Zhang TM, Wu Y, Zhang XC, Wang QL (2009) Sixty-four-slice multidetector computed tomography for preoperative evaluation of left ventricular function and mass in patients with mitral regurgitation: comparison with magnetic resonance imaging and echocardiography. Eur Radiol 19(9):2107–2116

    Article  PubMed  Google Scholar 

  19. Mahnken AH, Bruners P, Schmidt B, Bornikoel C, Flohr T, Gunther RW (2009) Left ventricular function can reliably be assessed from dual-source CT using ECG-gated tube current modulation. Invest Radiol 44(7):384–389

    Article  PubMed  Google Scholar 

  20. Alfakih K, Bloomer T, Bainbridge S, Bainbridge G, Ridgway J, Williams G, Sivananthan M (2004) A comparison of left ventricular mass between two-dimensional echocardiography, using fundamental and tissue harmonic imaging, and cardiac MRI in patients with hypertension. Eur J Radiol 52(2):103–109

    Article  PubMed  Google Scholar 

  21. Perdrix L, Mansencal N, Cocheteux B, Chatellier G, Bissery A, Diebold B, Mousseaux E, Abergel E (2011) How to calculate left ventricular mass in routine practice? An echocardiographic versus cardiac magnetic resonance study. Arch Cardiovasc Dis 104(5):343–351

    Article  PubMed  Google Scholar 

  22. Ferencik M, Gregory SA, Butler J, Achenbach S, Yeh RW, Hoffmann U, Inglessis I, Cury RC, Nieman K, McNulty IA, Healy JA, Brady TJ, Semigran MJ, Jang IK (2007) Analysis of cardiac dimensions, mass and function in heart transplant recipients using 64-slice multi-detector computed tomography. J Heart Lung Transplant 26(5):478–484

    Article  PubMed  Google Scholar 

  23. Malago R, Tavella D, Mantovani W, D’Onofrio M, Caliari G, Pezzato A, Nicoli L, Benussi P, Pozzi Mucelli R (2011) MDCT coronary angiography vs 2D echocardiography for the assessment of left ventricle functional parameters. Radiol Med 116(4):505–520

    Article  CAS  PubMed  Google Scholar 

  24. Truong QA, Toepker M, Mahabadi AA, Bamberg F, Rogers IS, Blankstein R, Brady TJ, Nagurney JT, Hoffmann U (2009) Relation of left ventricular mass and concentric remodeling to extent of coronary artery disease by computed tomography in patients without left ventricular hypertrophy: ROMICAT study. J Hypertens 27(12):2472–2482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Expert Panel on Detection E, Treatment of High Blood Cholesterol in A (2001) Executive summary of the third report of The National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285(19):2486–2497

    Article  Google Scholar 

  26. Christner JA, Kofler JM, McCollough CH (2010) Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 194(4):881–889

    Article  PubMed  Google Scholar 

  27. Ruzsics B, Gebregziabher M, Lee H, Brothers RL, Allmendinger T, Vogt S, Costello P, Schoepf UJ (2009) Coronary CT angiography: automatic cardiac-phase selection for image reconstruction. Eur Radiol 19(8):1906–1913

    Article  PubMed  Google Scholar 

  28. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl):5–40

    Article  CAS  PubMed  Google Scholar 

  29. Hamdan A, Asbach P, Wellnhofer E, Klein C, Gebker R, Kelle S, Kilian H, Huppertz A, Fleck E (2011) A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging 4(1):50–61

    Article  PubMed  Google Scholar 

  30. Dewey FE, Rosenthal D, Murphy DJ Jr, Froelicher VF, Ashley EA (2008) Does size matter? Clinical applications of scaling cardiac size and function for body size. Circulation 117(17):2279–2287

    Article  PubMed  Google Scholar 

  31. Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic–angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37(1):7–11

    Article  CAS  PubMed  Google Scholar 

  32. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6):450–458

    Article  CAS  PubMed  Google Scholar 

  33. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463

    Article  PubMed  Google Scholar 

  34. Du Bois D, Du Bois EF (1916) A formula to estimate the approximate surface if height and weight are known. Arch Intern Med 17:863–871

    Article  Google Scholar 

  35. D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB (2008) General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 117(6):743–753

    Article  PubMed  Google Scholar 

  36. Marma AK, Lloyd-Jones DM (2009) Systematic examination of the updated Framingham Heart Study general cardiovascular risk profile. Circulation 120(5):384–390

    Article  PubMed  Google Scholar 

  37. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, Hlatky MA, Hodgson JM, Kushner FG, Lauer MS, Shaw LJ, Smith SC Jr, Taylor AJ, Weintraub WS, Wenger NK, Jacobs AK, American College of Cardiology Foundation, American Heart Association Task Force on Practice G (2010) 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 122(25):e584–e636

    Article  PubMed  Google Scholar 

  38. de Simone G, Daniels SR, Devereux RB, Meyer RA, Roman MJ, de Divitiis O, Alderman MH (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20(5):1251–1260

    Article  PubMed  Google Scholar 

  39. Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M, Pearson G, Sinha S, Arai A, Lima JA, Bluemke DA (2006) Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR Am J Roentgenol 186(6 Suppl 2):S357–S365

    Article  PubMed  Google Scholar 

  40. Liao Y, Cooper RS, Durazo-Arvizu R, Mensah GA, Ghali JK (1997) Prediction of mortality risk by different methods of indexation for left ventricular mass. J Am Coll Cardiol 29(3):641–647

    Article  CAS  PubMed  Google Scholar 

  41. Gidding SS (2010) Controversies in the assessment of left ventricular mass. Hypertension 56(1):26–28

    Article  CAS  PubMed  Google Scholar 

  42. Brumback LC, Kronmal R, Heckbert SR, Ni H, Hundley WG, Lima JA, Bluemke DA (2010) Body size adjustments for left ventricular mass by cardiovascular magnetic resonance and their impact on left ventricular hypertrophy classification. Int J Cardiovasc Imaging 26(4):459–468

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67(5):968–977

    Article  CAS  PubMed  Google Scholar 

  44. Stamler J, Stamler R, Neaton JD (1993) Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med 153(5):598–615

    Article  CAS  PubMed  Google Scholar 

  45. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JA (2012) LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging 5(8):837–848

    Article  PubMed Central  PubMed  Google Scholar 

  46. MacMahon SW, Wilcken DE, Macdonald GJ (1986) The effect of weight reduction on left ventricular mass. A randomized controlled trial in young, overweight hypertensive patients. N Engl J Med 314(6):334–339

    Article  CAS  PubMed  Google Scholar 

  47. Schmieder RE, Martus P, Klingbeil A (1996) Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 275(19):1507–1513

    Article  CAS  PubMed  Google Scholar 

  48. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I, Reboldi G, Porcellati C (1998) Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation 97(1):48–54

    Article  CAS  PubMed  Google Scholar 

  49. Tong W, Lima JA, Lai H, Celentano DD, Dai S, Lai S (2004) Relation of coronary artery calcium to left ventricular mass in African-Americans. Am J Cardiol 93(4):490–492

    Article  CAS  PubMed  Google Scholar 

  50. Tang W, Arnett DK, Province MA, Lewis CE, North K, Carr JJ, Pankow JS, Hopkins PN, Devereux RB, Wilk JB, Wagenknecht L, Investigators of the FHS, HyperGen (2006) Racial differences in the association of coronary calcified plaque with left ventricular hypertrophy: the National Heart, Lung, and Blood Institute Family Heart Study and Hypertension Genetic Epidemiology Network. Am J Cardiol 97(10):1441–1448

    Article  PubMed  Google Scholar 

  51. Steen H, Nasir K, Flynn E, El-Shehaby I, Lai S, Katus HA, Bluemcke D, Lima JA (2007) Is magnetic resonance imaging the ‘reference standard’ for cardiac functional assessment? Factors influencing measurement of left ventricular mass and volumes. Clin Res Cardiol 96(10):743–751

    Article  CAS  PubMed  Google Scholar 

  52. Mao SS, Li D, Rosenthal DG, Cerilles M, Zeb I, Wu H, Flores F, Gao Y, Budoff MJ (2013) Dual-standard reference values of left ventricular volumetric parameters by multidetector CT angiography. J Cardiovasc Comput Tomogr 7(4):234–240

    Article  PubMed  Google Scholar 

  53. Juergens KU, Seifarth H, Range F, Wienbeck S, Wenker M, Heindel W, Fischbach R (2008) Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT. AJR Am J Roentgenol 190(2):308–314

    Article  PubMed  Google Scholar 

  54. Lim SJ, Choo KS, Park YH, Kim JS, Kim JH, Chun KJ, Jeong DW (2011) Assessment of left ventricular function and volume in patients undergoing 128-slice coronary CT angiography with ECG-based maximum tube current modulation: a comparison with echocardiography. Korean J Radiol 12(2):156–162

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Kyoung Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by our local institutional review board (Ajou University Hospital).

Informed consent

Our institutional review board waived the need for informed patient consent due to its retrospective nature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J.Y., Sun, J.S., Sur, Y.K. et al. Relationship between left ventricular mass and coronary artery disease in young adults: a single-center study using cardiac computed tomography. Int J Cardiovasc Imaging 31 (Suppl 2), 187–196 (2015). https://doi.org/10.1007/s10554-015-0772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0772-1

Keywords

Navigation