Skip to main content
Log in

Evaluation of ventricular dysfunction using semi-automatic longitudinal strain analysis of four-chamber cine MR imaging

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate ventricular dysfunction using the longitudinal strain analysis in 4-chamber (4CH) cine MR imaging, and to investigate the agreement between the semi-automatic and manual measurements in the analysis. Fifty-two consecutive patients with ischemic, or non-ischemic cardiomyopathy and repaired tetralogy of Fallot who underwent cardiac MR examination incorporating cine MR imaging were retrospectively enrolled. The LV and RV longitudinal strain values were obtained by semi-automatically and manually. Receiver operating characteristic (ROC) analysis was performed to determine the optimal cutoff of the minimum longitudinal strain value for the detection of patients with cardiac dysfunction. The correlations between manual and semi-automatic measurements for LV and RV walls were analyzed by Pearson coefficient analysis. ROC analysis demonstrated the optimal cut-off of the minimum longitudinal strain values (εL_min) for diagnoses the LV and RV dysfunction at a high accuracy (LV εL_min = −7.8 %: area under the curve, 0.89; sensitivity, 83 %; specificity, 91 %, RV εL_min = −15.7 %: area under the curve, 0.82; sensitivity, 92 %; specificity, 68 %). Excellent correlations between manual and semi-automatic measurements for LV and RV free wall were observed (LV, r = 0.97, p < 0.01; RV, r = 0.79, p < 0.01). Our semi-automatic longitudinal strain analysis in 4CH cine MR imaging can evaluate LV and RV dysfunction with simply and easy measurements. The strain analysis could have extensive application in cardiac imaging for various clinical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ostrzega E, Maddahi J, Honma H, Crues JV 3rd, Resser KJ, Charuzi Y, Berman DS (1989) Quantification of left ventricular myocardial mass in humans by nuclear magnetic resonance imaging. Am Heart J 117:444–452

    Article  CAS  PubMed  Google Scholar 

  2. Pattynama PM, De Roos A, Van der Wall EE, Van Voorthuisen AE (1994) Evaluation of cardiac function with magnetic resonance imaging. Am Heart J 128:595–607

    Article  CAS  PubMed  Google Scholar 

  3. Pattynama PM, Lamb HJ, Van der Velde EA, Van der Geest RJ, Van der Wall EE, De Roos A (1995) Reproducibility of MRI-derived measurements of right ventricular volumes and myocardial mass. Magn Reson Imaging 13:53–63

    Article  CAS  PubMed  Google Scholar 

  4. Helbing WA, Rebergen SA, Maliepaard C, Hansen B, Ottenkamp J, Reiber JH, de Roos A (1995) Quantification of right ventricular function with magnetic resonance imaging in children with normal hearts and with congenital heart disease. Am Heart J 130:828–837

    Article  CAS  PubMed  Google Scholar 

  5. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU (2003) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  6. Noble NM, Hill DL, Breeuwer M, Schnabel JA, Hawkes DJ, Gerritsen FA, Razavi R (2003) Myocardial delineation via registration in a polar coordinate system. Acad Radiol 10:1349–1358

    Article  PubMed  Google Scholar 

  7. Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivananthan M (2003) Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 18:25–32

    Article  PubMed  Google Scholar 

  8. Hautvast G, Lobregt S, Breeuwer M, Gerritsen F (2006) Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans Med Imaging 25:1472–1482

    Article  PubMed  Google Scholar 

  9. Feng W, Nagaraj H, Gupta H, Lloyd SG, Aban I, Perry GJ, Calhoun DA, Dell’Italia LJ, Denney TS Jr (2009) A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR. J Cardiovasc Magn Reson 13(11):30. doi:10.1186/1532-429X-11-30

    Article  Google Scholar 

  10. Kawakubo M, Nagao M, Kumazawa S, Chishaki AS, Mukai Y, Nakamura Y, Honda H, Morishita J (2013) Evaluation of cardiac dyssynchrony with longitudinal strain analysis in 4-chamber cine MR imaging. Eur J Radiol 82:2212–2216

    Article  PubMed  Google Scholar 

  11. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47:789–793

    Article  PubMed  Google Scholar 

  12. Kawagishi T (2008) Speckle tracking for assessment of cardiac motion and dyssynchrony. Echocardiography 25:1167–1171

    Article  PubMed  Google Scholar 

  13. Cameli M, Caputo M, Mondillo S, Ballo P, Palmerini E, Lisi M, Marino E, Galderisi M (2009) Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking. Cardiovasc Ultrasound. doi:10.1186/1476-7120-7-6

    PubMed Central  PubMed  Google Scholar 

  14. Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, Sugeng L, Lang RM (2009) Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J 30:1565–1573

    Article  PubMed  Google Scholar 

  15. Maret E, Todt T, Brudin L, Nylander E, Swahn E, Ohlsson JL, Engvall JE (2009) Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar. Cardiovasc Ultrasound. doi:10.1186/1476-7120-7-53

    PubMed Central  PubMed  Google Scholar 

  16. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, Benson DW, Mazur W (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151

    Article  PubMed  Google Scholar 

  17. Bhatti S, Al-Khalidi H, Hor K, Hakeem A, Taylor M, Quyyumi AA, Oshinski J, Pecora AL, Kereiakes D, Chung E, Pedrizzetti G, Miszalski-Jamka T, Mazur W (2012) Assessment of myocardial contractile function using global and segmental circumferential strain following intracoronary stem cell infusion after myocardial infarction: MRI feature tracking feasibility study. ISRN Radiol. doi:10.5402/2013/371028

    PubMed Central  PubMed  Google Scholar 

  18. Schuster A, Morton G, Hussain ST, Jogiya R, Kutty S, Asrress KN, Makowski MR, Bigalke B, Perera D, Beerbaum P, Nagel E (2013) The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol 82:296–301

    Article  PubMed  Google Scholar 

  19. Kano A, Doi K, MacMahon H, Hassell DD, Giger ML (1994) Digital image subtraction of temporally sequential chest images for detection of interval change. Med Phys 21:453–461

    Article  CAS  PubMed  Google Scholar 

  20. Castillo E, Osman NF, Rosen BD, El-Shehaby I, Pan L, Jerosch-Herold M, Lai S, Bluemke DA, Lima JA (2005) Quantitative assessment of regional myocardial function with MR-tagging in a multi-center study: interobserver and intraobserver agreement of fast strain analysis with Harmonic Phase (HARP) MRI. J Cardiovasc Magn Reson 7:783–791

    Article  PubMed  Google Scholar 

  21. Nagao M, Hatakenaka M, Matsuo Y, Kamitani T, Higuchi K, Shikata F, Nagashima M, Mochizuki T, Honda H (2012) Subendocardial contractile impairment in chronic ischemic myocardium: assessment by strain analysis of 3T tagged CMR. J Cardiovasc Magn Reson 14:14

    Article  PubMed Central  PubMed  Google Scholar 

  22. Leather HA, Ama’ R, Missant C, Rex S, Rademakers FE, Wouters PF (2006) Longitudinal but not circumferential deformation reflects global contractile function in the right ventricle with open pericardium. Am J Physiol Heart Circ Physiol 290:2369–2375

    Article  Google Scholar 

Download references

Acknowledgments

The authors state that this work has not received any funding. A declares that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masateru Kawakubo.

Ethics declarations

Conflict of interest

Nagao M. receives research Grant from Bayer Healthcare Japan and Philips Electronics Japan. The other authors have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakubo, M., Nagao, M., Kumazawa, S. et al. Evaluation of ventricular dysfunction using semi-automatic longitudinal strain analysis of four-chamber cine MR imaging. Int J Cardiovasc Imaging 32, 283–289 (2016). https://doi.org/10.1007/s10554-015-0771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0771-2

Keywords

Navigation