Skip to main content
Log in

Relation of epicardial fat to central aortic pressure and left ventricular diastolic function in patients with known or suspected coronary artery disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The present study tested the hypothesis that epicardial fat may be associated with augmented central aortic pressure and impaired left ventricular (LV) function. We studied 134 consecutive patients undergoing left-sided cardiac catheterization for coronary artery disease (CAD) and examined the relation of epicardial fat volume measured by multi-detector computed tomography to ascending aortic pressure and LV ejection fraction determined by cardiac catheterization as well as indices of LV diastolic function assessed by Doppler echocardiography [early diastolic mitral annular velocity (e′) and a ratio of early diastolic mitral inflow to annular velocities (E/e′)]. Epicardial fat volume indexed to body surface area correlated positively with age (r = 0.24, P < 0.01), body mass index (r = 0.38, P < 0.001), systolic aortic pressure (r = 0.21, P < 0.05), aortic pulse pressure (r = 0.23, P < 0.01), LV ejection fraction (r = 0.22, P < 0.05) and E/e′ (r = 0.24, P < 0.05) and did negatively with e′ (r = −0.31, P < 0.05). In multivariate linear regression including potential confounders, increased epicardial fat volume index correlated with aortic systolic and pulse pressure and LV diastolic function indices, but not LV ejection fraction. In conclusion, we found that epicardial fat was associated with augmented central aortic pressure and LV diastolic dysfunction in patients with known or suspected CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543

    Article  PubMed  Google Scholar 

  2. Shimabukuro M (2009) Cardiac adiposity and global cardiometabolic risk: new concept and clinical implication. Circ J 73:27–34

    Article  PubMed  Google Scholar 

  3. Lim S, Meigs JB (2013) Ectopic fat and cardiometabolic and vascular risk. Int J Cardiol 169:166–176

    Article  PubMed  Google Scholar 

  4. Korkmaz L, Cirakoglu OF, Agac MT et al (2013) Relation of epicardial adipose tissue with arterial compliance and stiffness in patients with hypertension. Angiology (in press)

  5. Kim BJ, Kim BS, Kang JH (2013) Echocardiographic epicardial fat thickness is associated with arterial stiffness. Int J Cardiol 167:2234–2238

    Article  PubMed  Google Scholar 

  6. Natale F, Tedesco MA, Mocerino R et al (2009) Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives. Eur J Echocardiogr 10:549–555

    Article  PubMed  Google Scholar 

  7. Brinkley TE, Hsu FC, Carr JJ et al (2011) Pericardial fat is associated with carotid stiffness in the Multi-Ethnic Study of Atherosclerosis. Nutr Metab Cardiovasc Dis 21:332–338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. O’Rourke MF, Mancia G (1999) Arterial stiffness. J Hypertens 17:1–4

    Article  PubMed  Google Scholar 

  9. Seino Y, Nanjo K, Tajima N et al (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig 1:212–228

    Article  PubMed  PubMed Central  Google Scholar 

  10. Teramoto T, Sasaki J, Ueshima H et al (2007) Executive summary of Japan Atherosclerosis Society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb 14:45–50

    Article  PubMed  CAS  Google Scholar 

  11. Dey D, Nakazato R, Li D, Berman DS (2012) Epicardial and thoracic fat—noninvasive measurement and clinical implications. Cardiovasc Diagn Ther 2:85–93

    PubMed  PubMed Central  Google Scholar 

  12. Chapman CB, Baker O, Reynolds J, Bonte FJ (1958) Use of biplane cinefluorography for measurement of ventricular volume. Circulation 18:1105–1117

    Article  PubMed  CAS  Google Scholar 

  13. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22:107–133

    Article  PubMed  Google Scholar 

  14. Schiller NB, Shah PM, Crawford M et al (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2:358–367

    Article  PubMed  CAS  Google Scholar 

  15. Matsuo S, Imai E, Horio M et al (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  PubMed  CAS  Google Scholar 

  16. Hope SA, Tay DB, Meredith IT, Cameron JD (2003) Use of arterial transfer functions for the derivation of aortic waveform characteristics. J Hypertens 21:1299–1305

    Article  PubMed  CAS  Google Scholar 

  17. Iacobellis G, Leonetti F, Singh N, Sharma M (2007) Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol 115:272–273

    Article  PubMed  Google Scholar 

  18. Cavalcante JL, Tamarappoo BK, Hachamovitch R et al (2012) Association of epicardial fat, hypertension, subclinical coronary artery disease, and metabolic syndrome with left ventricular diastolic dysfunction. Am J Cardiol 110:1793–1798

    Article  PubMed  Google Scholar 

  19. Park HE, Choi SY, Kim M (2014) Association of epicardial fat with left ventricular diastolic function in subjects with metabolic syndrome: assessment using 2-dimensional echocardiography. BMC Cardiovasc Disord 14:3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hori M, Inoue M, Kitakaze M, Kitabatake A, Abe H (1985) Altered loading sequence as an underlying mechanism of afterload dependency of ventricular relaxation in hearts in situ. Jpn Circ J 49:245–254

    Article  PubMed  CAS  Google Scholar 

  21. Kohno F, Kumada T, Kambayashi M et al (1996) Change in aortic end-systolic pressure by alterations in loading sequence and its relation to left ventricular isovolumic relaxation. Circulation 93:2080–2087

    Article  PubMed  CAS  Google Scholar 

  22. Leite-Moreira AF, Correia-Pinto J, Gillebert TC (1999) Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction. Cardiovasc Res 43:344–353

    Article  PubMed  CAS  Google Scholar 

  23. Buckberg GD, Fixler DE, Archie JP, Hoffman JI (1972) Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 30:67–81

    Article  PubMed  CAS  Google Scholar 

  24. Paulus WJ, Grossman W, Serizawa T et al (1985) Different effects of two types of ischemia on myocardial systolic and diastolic function. Am J Physiol 248:H719–H728

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekatsu Fukuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachiya, K., Fukuta, H., Wakami, K. et al. Relation of epicardial fat to central aortic pressure and left ventricular diastolic function in patients with known or suspected coronary artery disease. Int J Cardiovasc Imaging 30, 1393–1398 (2014). https://doi.org/10.1007/s10554-014-0472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0472-2

Keywords

Navigation