Skip to main content
Log in

Fusion of optical coherence tomographic and angiographic data for more accurate evaluation of the endothelial shear stress patterns and neointimal distribution after bioresorbable scaffold implantation: comparison with intravascular ultrasound-derived reconstructions

  • Original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Intravascular ultrasound (IVUS)-based reconstructions have been traditionally used to examine the effect of endothelial shear stress (ESS) on neointimal formation. The aim of this analysis is to compare the association between ESS and neointimal thickness (NT) in models obtained by the fusion of optical coherence tomography (OCT) and coronary angiography and in the reconstructions derived by the integration of IVUS and coronary angiography. We analyzed data from six patients implanted with an Absorb bioresorbable vascular scaffold that had biplane angiography, IVUS and OCT investigation at baseline and 6 or 12 months follow-up. The IVUS and OCT follow-up data were fused separately with the angiographic data to reconstruct the luminal morphology at baseline and follow-up. Blood flow simulation was performed on the baseline reconstructions and the ESS was related to NT. In the OCT-based reconstructions the ESS were lower compared to the IVUS-based models (1.29 ± 0.66 vs. 1.87 ± 0.66 Pa, P = 0.030). An inverse correlation was noted between the logarithmic transformed ESS and the measured NT in all the OCT-based models which was higher than the correlation reported in five of the six IVUS-derived models (−0.52 ± 0.19 Pa vs. −0.10 ± 0.04, P = 0.028). Fusion of OCT and coronary angiography appears superior to IVUS-based reconstructions; therefore it should be the method of choice for the study of the effect of the ESS on neointimal proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gijsen FJ, Oortman RM, Wentzel JJ, Schuurbiers JC, Tanabe K, Degertekin M, Ligthart JM, Thury A, de Feyter PJ, Serruys PW, Slager CJ (2003) Usefulness of shear stress pattern in predicting neointima distribution in sirolimus-eluting stents in coronary arteries. Am J Cardiol 92(11):1325–1328

    Article  PubMed  Google Scholar 

  2. Papafaklis MI, Bourantas CV, Theodorakis PE, Katsouras CS, Naka KK, Fotiadis DI, Michalis LK (2010) The effect of shear stress on neointimal response following sirolimus- and paclitaxel-eluting stent implantation compared with bare-metal stents in humans. JACC Cardiovasc Interv 3(11):1181–1189. doi:10.1016/j.jcin.2010.08.018

    Article  PubMed  Google Scholar 

  3. Suzuki N, Nanda H, Angiolillo DJ, Bezerra H, Sabate M, Jimenez-Quevedo P, Alfonso F, Macaya C, Bass TA, Ilegbusi OJ, Costa MA (2008) Assessment of potential relationship between wall shear stress and arterial wall response after bare metal stent and sirolimus-eluting stent implantation in patients with diabetes mellitus. Int J Cardiovasc Imaging 24(4):357–364. doi:10.1007/s10554-007-9274-0

    Article  PubMed  Google Scholar 

  4. Wentzel JJ, Krams R, Schuurbiers JC, Oomen JA, Kloet J, van Der Giessen WJ, Serruys PW, Slager CJ (2001) Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation 103(13):1740–1745

    Article  CAS  PubMed  Google Scholar 

  5. Guagliumi G, Sirbu V (2008) Optical coherence tomography: high resolution intravascular imaging to evaluate vascular healing after coronary stenting. Catheter Cardiovasc Interv 72(2):237–247. doi:10.1002/ccd.21606

    Article  PubMed  Google Scholar 

  6. Athanasiou LS, Bourantas CV, Siogkas PK, Sakellarios AI, Exarchos TP, Naka KK, Papafaklis MI, Michalis LK, Prati F, Fotiadis DI (2012) 3D reconstruction of coronary arteries using frequency domain optical coherence tomography images and biplane angiography. Conf Proc IEEE Eng Med Biol Soc 2012:2647–2650. doi:10.1109/EMBC.2012.6346508

    CAS  PubMed  Google Scholar 

  7. Papafaklis MI, Bourantas CV, Yonetsu T, Kato K, Kotsia A, Coskun AU, Jia H, Antoniadis AP, Vergallo R, Tsuda M, Fotiadis DI, Feldman CL, Stone PH, Jang IK, Michalis LK (2012) Geometrically accurate three-dimensional coronary artery reconstruction using frequency-domain optical coherence tomography and angiographic data: new opportunities for in vivo endothelial shear stress assessment. JACC Cardiovasc Interv 6:S36

    Google Scholar 

  8. Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Miquel-Hebert K, Rapoza R, Garcia-Garcia HM (2010) Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 122(22):2301–2312. doi:10.1161/CIRCULATIONAHA.110.970772

    Article  CAS  PubMed  Google Scholar 

  9. Gomez-Lara J, Radu M, Brugaletta S, Farooq V, Diletti R, Onuma Y, Windecker S, Thuesen L, McClean D, Koolen J, Whitbourn R, Dudek D, Smits PC, Regar E, Veldhof S, Rapoza R, Ormiston JA, Garcia-Garcia HM, Serruys PW (2011) Serial analysis of the malapposed and uncovered struts of the new generation of everolimus-eluting bioresorbable scaffold with optical coherence tomography. JACC Cardiovasc Interv 4(9):992–1001. doi:10.1016/j.jcin.2011.03.020

    Article  PubMed  Google Scholar 

  10. Bourantas CV, Papafaklis MI, Athanasiou L, Kalatzis FG, Naka KK, Siogkas PK, Takahashi S, Saito S, Fotiadis DI, Feldman CL, Stone PH, Michalis LK (2013) A new methodology for accurate 3-dimensional coronary artery reconstruction using routine intravascular ultrasound and angiographic data: implications for widespread assessment of endothelial shear stress in humans. EuroIntervention 9(5):582–93. doi:10.4244/EIJV9I5A94

    Google Scholar 

  11. Papafaklis MI, Bourantas CV, Theodorakis PE, Katsouras CS, Fotiadis DI, Michalis LK (2009) Relationship of shear stress with in-stent restenosis: bare metal stenting and the effect of brachytherapy. Int J Cardiol 134(1):25–32. doi:10.1016/j.ijcard.2008.02.006

    Article  PubMed  Google Scholar 

  12. Sakamoto S, Takahashi S, Coskun AU, Papafaklis MI, Takahashi A, Saito S, Stone PH, Feldman CL (2013) Relation of distribution of coronary blood flow volume to coronary artery dominance. Am J Cardiol. doi:10.1016/j.amjcard.2013.01.290

    PubMed  Google Scholar 

  13. Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Namiki A, Hirohata A, Matsumura T, Yamazaki S, Yokoi H, Tanaka S, Otsuji S, Yoshimachi F, Honye J, Harwood D, Reitman M, Coskun AU, Papafaklis MI, Feldman CL (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126(2):172–181. doi:10.1161/CIRCULATIONAHA.112.096438

    Article  PubMed  Google Scholar 

  14. He Y, Duraiswamy N, Frank AO, Moore JE Jr (2005) Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J Biomech Eng 127(4):637–647

    Article  PubMed  Google Scholar 

  15. Balossino R, Gervaso F, Migliavacca F, Dubini G (2008) Effects of different stent designs on local hemodynamics in stented arteries. J Biomech 41(5):1053–1061. doi:10.1016/j.jbiomech.2007.12.005

    Article  PubMed  Google Scholar 

  16. Duraiswamy N, Schoephoerster RT, Moore JE Jr (2009) Comparison of near-wall hemodynamic parameters in stented artery models. J Biomech Eng 131(6):061006. doi:10.1115/1.3118764

    Article  PubMed Central  PubMed  Google Scholar 

  17. Jimenez JM, Davies PF (2009) Hemodynamically driven stent strut design. Ann Biomed Eng 37(8):1483–1494. doi:10.1007/s10439-009-9719-9

    Article  PubMed Central  PubMed  Google Scholar 

  18. Mejia J, Ruzzeh B, Mongrain R, Leask R, Bertrand OF (2009) Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments. Biomed Eng Online 8:8. doi:10.1186/1475-925X-8-8

    Article  PubMed Central  PubMed  Google Scholar 

  19. LaDisa JF Jr, Olson LE, Guler I, Hettrick DA, Kersten JR, Warltier DC, Pagel PS (2005) Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J Appl Physiol 98(3):947–957. doi:10.1152/japplphysiol.0 0872.2004

    Article  PubMed  Google Scholar 

  20. Pant S, Bressloff NW, Forrester AI, Curzen N (2010) The influence of strut-connectors in stented vessels: a comparison of pulsatile flow through five coronary stents. Ann Biomed Eng 38(5):1893–1907. doi:10.1007/s10439-010-9962-0

    Article  PubMed  Google Scholar 

  21. Serruys PW, Onuma Y, Dudek D, Smits PC, Koolen J, Chevalier B, de Bruyne B, Thuesen L, McClean D, van Geuns RJ, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Hebert KM, Sudhir K, Garcia-Garcia HM, Ormiston JA (2011) Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12-month clinical and imaging outcomes. J Am Coll Cardiol 58(15):1578–1588. doi:10.1016/j.jacc.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  22. Ormiston JA, Serruys PW, Onuma Y, van Geuns RJ, de Bruyne B, Dudek D, Thuesen L, Smits PC, Chevalier B, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Dorange C, Veldhof S, Hebert KM, Rapoza R, Garcia-Garcia HM (2012) First serial assessment at 6 months and 2 years of the second generation of absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study. Circ Cardiovasc Interv 5(5):620–632. doi:10.1161/CIRCINTERVENTIONS.112.971549

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author is funded by the Hellenic Cardiological Society, Athens, Greece.

Conflict of interest

Jin Wang is employee of Abbott Vascular. None of the other authors have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. Serruys.

Additional information

Christos V. Bourantas and Michail I. Papafaklis have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourantas, C.V., Papafaklis, M.I., Lakkas, L. et al. Fusion of optical coherence tomographic and angiographic data for more accurate evaluation of the endothelial shear stress patterns and neointimal distribution after bioresorbable scaffold implantation: comparison with intravascular ultrasound-derived reconstructions. Int J Cardiovasc Imaging 30, 485–494 (2014). https://doi.org/10.1007/s10554-014-0374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-014-0374-3

Keywords

Navigation