Skip to main content
Log in

Capability of three-dimensional speckle tracking radial strain for identification of patients with cardiac sarcoidosis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Since cardiac sarcoidosis (CS) leads to substantial morbidity and sudden death, early diagnosis and appropriate management are crucial for patients with CS. Echocardiography used to be considered a useful diagnostic tool for patients with CS, but CS may clinically present as dilated cardiomyopathy (DCM). Our objective was to investigate whether a novel three-dimensional (3-D) speckle-tracking strain can identify patients with CS more accurately. We studied 23 CS patients with an ejection fraction (EF) of 46 ± 10 %, and 16 EF-matched patients with DCM (EF 45 ± 11 %). Global radial (GRS), circumferential (GCS) and longitudinal (GLS) strain was assessed using 3-D speckle-tracking system. GRS of patients with CS was significantly lower than that of patients with DCM (18.5 ± 8.4 vs. 28.5 ± 8.3 %, p < 0.01), but GCS and GLS in patients with CS and DCM were similar. GRS ≦ 21.1 could differentiate CS from DCM with a sensitivity of 70 %, specificity of 88 % and area under the curve of 0.79. An additional noteworthy findings was that, patients with CS showed more negative radial strain curves than did those with DCM (1.7 ± 2.3 vs. 0.1 ± 0.5, p < 0.01). In conclusion, 3-D speckle-tracking radial strain shows good potential to distinguish CS from DCM. Our observations can thus be expected to have clinical implications for management of CS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newman LS, Rose CS, Maier LA (1997) Sarcoidosis. N Engl J Med 336(17):1224–1234

    Article  PubMed  CAS  Google Scholar 

  2. Deng JC, Baughman RP, Lynch JP 3rd (2002) Cardiac involvement in sarcoidosis. Semin Respir Crit Care Med 23(6):513–527

    Article  PubMed  Google Scholar 

  3. Chiu CZ, Nakatani S, Zhang G, Tachibana T, Ohmori F, Yamagishi M, Kitakaze M, Tomoike H, Miyatake K (2005) Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol 95(1):143–146

    Article  PubMed  CAS  Google Scholar 

  4. Luk A, Metawee M, Ahn E, Gustafsson F, Ross H, Butany J (2009) Do clinical diagnoses correlate with pathological diagnoses in cardiac transplant patients? The importance of endomyocardial biopsy. Can J Cardiol 25(2):e48–e54

    Article  PubMed  Google Scholar 

  5. Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, Sugeng L, Lang RM (2009) Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J 30(13):1565–1573

    Article  PubMed  Google Scholar 

  6. Tanaka H, Hara H, Adelstein EC, Schwartzman D, Saba S, Gorcsan J 3rd (2010) Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. JACC Cardiovasc Imaging 3(5):461–471

    Article  PubMed  Google Scholar 

  7. Tanaka H, Hara H, Saba S, Gorcsan J 3rd (2010) Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am J Cardiol 105(2):235–242

    Article  PubMed  Google Scholar 

  8. Thebault C, Donal E, Bernard A, Moreau O, Schnell F, Mabo P, Leclercq C (2011) Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr 12(1):26–32

    Article  PubMed  Google Scholar 

  9. Soejima K, Yada H (2009) The work-up and management of patients with apparent or subclinical cardiac sarcoidosis: with emphasis on the associated heart rhythm abnormalities. J Cardiovasc Electrophysiol 20(5):578–583

    Article  PubMed  Google Scholar 

  10. Uemura A, Morimoto S, Hiramitsu S, Kato Y, Ito T, Hishida H (1999) Histologic diagnostic rate of cardiac sarcoidosis: evaluation of endomyocardial biopsies. Am Heart J 138(2 Pt 1):299–302

    Article  PubMed  CAS  Google Scholar 

  11. Fahy GJ, Marwick T, McCreery CJ, Quigley PJ, Maurer BJ (1996) Doppler echocardiographic detection of left ventricular diastolic dysfunction in patients with pulmonary sarcoidosis. Chest 109(1):62–66

    Article  PubMed  CAS  Google Scholar 

  12. Uemura A, Morimoto S, Kato Y, Hiramitsu S, Ohtsuki M, Kato S, Sugiura A, Miyagishima K, Iwase M, Hishida H (2005) Relationship between basal thinning of the interventricular septum and atrioventricular block in patients with cardiac sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 22(1):63–65

    PubMed  Google Scholar 

  13. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, Meine TJ, White JB, Elliott MD, Kim HW, Judd RM, Kim RJ (2009) Detection of myocardial damage in patients with sarcoidosis. Circulation 120(20):1969–1977

    Article  PubMed  Google Scholar 

  14. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Cheriex EC, Gorgels AP, Crijns HJ (2005) The additional value of gadolinium-enhanced MRI to standard assessment for cardiac involvement in patients with pulmonary sarcoidosis. Chest 128(3):1629–1637

    Article  PubMed  Google Scholar 

  15. Tadamura E, Yamamuro M, Kubo S, Kanao S, Saga T, Harada M, Ohba M, Hosokawa R, Kimura T, Kita T, Togashi K (2005) Effectiveness of delayed enhanced MRI for identification of cardiac sarcoidosis: comparison with radionuclide imaging. AJR Am J Roentgenol 185(1):110–115

    PubMed  Google Scholar 

  16. Patel AR, Klein MR, Chandra S, Spencer KT, Decara JM, Lang RM, Burke MC, Garrity ER, Hogarth DK, Archer SL, Sweiss NJ, Beshai JF (2011) Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. Eur J Heart Fail 13(11):1231–1237

    Article  PubMed  Google Scholar 

  17. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, Kawamura R, Aonuma K (2009) Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2(6):451–459

    Article  PubMed  Google Scholar 

  18. Cheong BY, Muthupillai R, Nemeth M, Lambert B, Dees D, Huber S, Castriotta R, Flamm SD (2009) The utility of delayed-enhancement magnetic resonance imaging for identifying nonischemic myocardial fibrosis in asymptomatic patients with biopsy-proven systemic sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 26(1):39–46

    PubMed  CAS  Google Scholar 

  19. Kim JS, Judson MA, Donnino R, Gold M, Cooper LT Jr, Prystowsky EN, Prystowsky S (2009) Cardiac sarcoidosis. Am Heart J 157(1):9–21

    Article  PubMed  CAS  Google Scholar 

  20. Remme WJ, Swedberg K (2002) Comprehensive guidelines for the diagnosis and treatment of chronic heart failure. Task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. Eur J Heart Fail 4(1):11–22

    Article  PubMed  Google Scholar 

  21. Ardehali H, Kasper EK, Baughman KL (2005) Diagnostic approach to the patient with cardiomyopathy: whom to biopsy. Am Heart J 149(1):7–12

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, T., Tanaka, H., Matsumoto, K. et al. Capability of three-dimensional speckle tracking radial strain for identification of patients with cardiac sarcoidosis. Int J Cardiovasc Imaging 29, 317–324 (2013). https://doi.org/10.1007/s10554-012-0104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0104-7

Keywords

Navigation