Skip to main content
Log in

Reduced global longitudinal and radial strain with normal left ventricular ejection fraction late after effective repair of aortic coarctation: a CMR feature tracking study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

We sought to determine whether global and regional left ventricular (LV) strain parameters were altered in repaired coarctation of the aorta (COA) with normal LV ejection fraction (EF) when compared with healthy adult controls, and whether such alterations were related to LV hypertrophy (LVH). We identified 81 patients after COA repair (31 female, age 25 ± 8.5 years) with inclusion criteria at follow-up CMR of: age ≥13 years, time post-repair ≥10 years, no aortic valve disease, LV-EF >50 %). LV deformation indices derived using CMR-feature tracking and volumetric EF were compared between COA patients and normal controls (n = 20, 10 female, age 37 ± 7 years), and between COA with versus without LVH. In repaired COA versus controls, LV-EF (%) was 62 ± 7.2 versus 58 ± 3.0 (p = 0.01), and LV mass (g/m2) 66 ± 16.8 versus 57.7 ± 6.0 (p = 0.0001). LV global longitudinal strain (GLS) was decreased to −17.0 ± 4.7 % in COA (−20 ± 5 % in controls, p = 0.02), and global radial strain (GRS) reduced to 40 ± 15 % (50 ± 12.4 % in controls, p = 0.003). The global circumferential strain (GCS) was preserved in COA at −23 ± 4.7 % (−24.6 ± 2.4 % in controls, p = 0.14). Regionally, LS decrease was marked in the basal segments (septal, p = 0.005, lateral, p = 0.013). In COA with LVH (n = 45, mass 76.3 ± 12.8 g/m2) versus without LVH (n = 36, mass 52.2 ± 10 g/m2), GLS was more markedly decreased (−15.7 ± 4.8 vs. −18.5 ± 4.2 %, p = 0.016, but GRS and GCS were similar (p = 0.49 and 0.27). In post-repair COA with normal LV-EF, GLS and GRS are reduced whilst GCS is preserved. GLS reduction is more pronounced in the presence of LVH. GLS may qualify as indicator of early LV dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

COA:

Coarctation of the aorta

CHD:

Congenital heart disease

CMR-FT:

Cardiac magnetic resonance-feature tracking

LV:

Left ventricle

References

  1. Fixler DE, Pastor P, Chamberlin M, Sigman E, Eifler CW (1990) Trends in congenital heart disease in Dallas County births 1971–1984. Circulation 81:137–142

    Google Scholar 

  2. Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC (1989) Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation 80(4):840–845

    Article  PubMed  CAS  Google Scholar 

  3. Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH (2002) Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol 89:541–547

    Article  PubMed  Google Scholar 

  4. Moskowitz WB, Schieken RM, Mosteller M, Bossano R (1990) Altered systolic and diastolic function in children after “successful” repair of coarctation of the aorta. Am Heart J 120:103–109

    Article  PubMed  CAS  Google Scholar 

  5. Kimball T, Reynolds J, Mays W, Khoury P, Claytor R, Daniels SR (1994) Persistent hyperdynamic cardiovascular state at rest and during exercise in children after successful repair of coarctation of the aorta. J Am Coll Cardiol 24:194–200

    Article  PubMed  CAS  Google Scholar 

  6. Gentles TL, Sanders SP, Colan SD (2000) Misrepresentation of left ventricular contractile function by endocardial indexes: clinical implications after coarctation repair. Am Heart J 140:585–595. doi:10.1067/mhj.2000.109642

    Article  PubMed  CAS  Google Scholar 

  7. Leandro J, Smallhorn JF, Benson L, Musewe N, Balfe JW, Dyck JD, West L, Freedom R (1992) Ambulatory blood pressure monitoring and left ventricular mass and function after successful surgical repair of coarctation of the aorta. J Am Coll Cardiol 20:197–204

    Article  PubMed  CAS  Google Scholar 

  8. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, Benson DW, Mazur W (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151. doi:10.1016/j.jcmg.2009.11.006

    Article  PubMed  Google Scholar 

  9. Truong UT, Li X, Broberg CS, Houle H, Schaal M, Ashraf M, Kilner P, Sheehan FH, Sable CA, Ge S, Sahn DJ (2010) Significance of mechanical alterations in single ventricle patients on twisting and circumferential strain as determined by analysis of strain from gradient cine magnetic resonance imaging sequences. Am J Cardiol 105:1465–1469. doi:10.1016/j.amjcard.2009.12.074

    Article  PubMed  Google Scholar 

  10. Schuster A, Kutty S, Padiyath A, Parish V, Gribben P, Danford DA, Makowski MR, Bigalke B, Beerbaum P, Nagel E (2011) Cardiac magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58

    Google Scholar 

  11. Schuster A, Paul M, Bettencourt N, Morton G, Chiribiri A, Ishida M et al (2011) Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy. Int J Cardiol

  12. Ortega M, Triedman JK, Geva T, Harrild DM (2011) Relation of left ventricular dyssynchrony measured by cardiac magnetic resonance tissue tracking in repaired tetralogy of fallot to ventricular tachycardia and death. Am J Cardiol 107:1535–1540. doi:10.1016/j.amjcard.2011.01.032

    Article  PubMed  Google Scholar 

  13. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  14. Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, Kuehne T, Beerbaum P (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76. doi:10.1161/circimaging.109.859074

    Article  PubMed  Google Scholar 

  15. de Divitiis M, Rubba P, Calabro R (2005) Arterial hypertension and cardiovascular prognosis after successful repair of aortic coarctation: a clinical model for the study of vascular function. Nutr Metab Cardiovasc Dis 15:382–394

    Google Scholar 

  16. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD (2010) Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J 31:794–805

    Google Scholar 

  17. Therrien J, Thorne SA, Wright A, Kilner PJ, Somerville J (2000) Repaired coarctation: a “cost-effective” approach to identify complications in adults. J Am Coll Cardiol 35:997–1002

    Google Scholar 

  18. Iwahashi N, Nakatani S, Kanzaki H, Hasegawa T, Abe H, Kitakaze M (2006) Acute improvement in myocardial function assessed by myocardial strain and strain rate after aortic valve replacement for aortic stenosis. J Am Soc Echocardiogr 19:1238–1244. doi:10.1016/j.echo.2006.04.041

    Article  PubMed  Google Scholar 

  19. Poulsen SH, Sogaard P, Nielsen-Kudsk JE, Egeblad H (2007) Recovery of left ventricular systolic longitudinal strain after valve replacement in aortic stenosis and relation to natriuretic peptides. J Am Soc Echocardiogr 20:877–884. doi:10.1016/j.echo.2006.11.020

    Article  PubMed  Google Scholar 

  20. Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2:356–364. doi:10.1161/CIRCIMAGING.109.862334

    Article  PubMed  Google Scholar 

  21. Kempny A, Diller GP, Orwat S, Kaleschke G, Kerckhoff G, Bunck AC et al (2012) Right ventricular-left ventricular interaction in adults with Tetralogy of Fallot: a combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int J Cardiol 154:259–264

    Google Scholar 

  22. di Salvo G, Pacileo G, Limongelli G, Verrengia M, Rea A, Santoro G et al (2007) Abnormal regional myocardial deformation properties and increased aortic stiffness in normotensive patients with aortic coarctation despite successful correction: an ABPM, standard echocardiography and strain rate imaging study. Clin Sci (Lond) 113:259–266

    Google Scholar 

  23. Young AA, Cowan BR, Occleshaw CJ, Oxenham HC, Gentles TL (2002) Temporal evolution of left ventricular strain late after repair of coarctation of the aorta using 3D MR tissue tagging. J Cardiovasc Magn Reson 4:233–243

    Google Scholar 

  24. Laser KT, Haas NA, Jansen N, Schäffler R, Palacios Argueta JR, Zittermann A, Peters B, Körperich H, Kececioglu D (2009) Is torsion a suitable echocardiographic parameter to detect acute changes in left ventricular afterload in children? J Am Soc Echocardiogr 22:1121–1128

    Article  PubMed  Google Scholar 

  25. Dinh W, Nickl W, Smettan J, Kramer F, Krahn T, Scheffold T et al (2010) Reduced global longitudinal strain in association to increased left ventricular mass in patients with aortic valve stenosis and normal ejection fraction: a hybrid study combining echocardiography and magnetic resonance imaging. Cardiovasc Ultrasound 8:29

    Google Scholar 

  26. Aurigemma GP, Silver KH, Priest MA, Gaasch WH (1995) Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol 26:195–202

    Article  PubMed  CAS  Google Scholar 

  27. Anversa P, Beghi C, Kikkawa Y, Olivetti G (1986) Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58:26–37

    Article  PubMed  CAS  Google Scholar 

  28. Marcus ML, Harrison DG, Chilian WM, Koyanagi S, Inou T, Tomanek RJ, Martins JB, Eastham CL, Hiratzka LF (1987) Alterations in the coronary circulation in hypertrophied ventricles. Circulation 75:I19–I25

    PubMed  CAS  Google Scholar 

  29. Karam R, Healy BP, Wicker P (1990) Coronary reserve is depressed in postmyocardial infarction reactive cardiac hypertrophy. Circulation 81:238–246

    Article  PubMed  CAS  Google Scholar 

  30. Safar ME, Levy BI, Struijker-Boudier H (2003) Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107:2864–2869. doi:10.1161/01.cir.0000069826.36125.b4

    Article  PubMed  Google Scholar 

  31. Vitarelli A, Conde Y, Cimino E, D’Orazio S, Stellato S, Battaglia D, Padella V, Caranci F, Continanza G, Dettori O, Capotosto L (2008) Assessment of ascending aorta distensibility after successful coarctation repair by strain Doppler echocardiography. J Am Soc Echocardiogr 21:729–736. doi:10.1016/j.echo.2007.10.007

    Article  PubMed  Google Scholar 

  32. Biederman RW, Doyle M, Yamrozik J, Williams RB, Rathi VK, Vido D et al (2005) Physiologic compensation is supranormal in compensated aortic stenosis: does it return to normal after aortic valve replacement or is it blunted by coexistent coronary artery disease? An intramyocardial magnetic resonance imaging study. Circulation 112:I429–I436

    Google Scholar 

Download references

Acknowledgments

The authors appreciate the assistance of the Magnetic Resonance Imaging laboratory staff at the Children’s Hospital and Medical Center. We also thank Berthold Klas, BS, TomTec Imaging Systems, TomTec Corporation USA for technical assistance. SK receives support from the American College of Cardiology Foundation and the American Heart Association.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelby Kutty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutty, S., Rangamani, S., Venkataraman, J. et al. Reduced global longitudinal and radial strain with normal left ventricular ejection fraction late after effective repair of aortic coarctation: a CMR feature tracking study. Int J Cardiovasc Imaging 29, 141–150 (2013). https://doi.org/10.1007/s10554-012-0061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0061-1

Keywords

Navigation