Skip to main content
Log in

Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Microvascular obstruction (MVO) is a strong independent predictor of left ventricular remodelling and mortality following ST-segment elevation myocardial infarction (STEMI). Microvascular obstruction can be identified at angiography or with gadolinium-enhanced cardiac MRI (CMR). First-pass perfusion CMR also allows a novel quantitative evaluation of myocardial blood flow (MBF) that might provide superior predictive data in the assessment of MVO. We sought to compare angiographic and CMR derived methodologies in the assessment of MVO to determine the optimal methodology that best predicts the surrogate outcome marker of left ventricular function post STEMI. Following primary-PCI angiographic assessment of ‘no-reflow’ with TIMI myocardial perfusion grade (TMPG) and myocardial blush grade (MBG) were documented. Assessment of CMR derived MVO was assessed on day 3, with MVO on first-pass perfusion imaging termed ‘early MVO’ and on late gadolinium enhancement, ‘late MVO’. Furthermore on the same day 3 CMR scan, myocardial blood flow in the infarct region was quantified at adenosine stress and rest utilizing standard perfusion imaging sequences. Assessment of remodelling, structure and function was undertaken via standard CMR imaging assessment on day 90 post-STEMI and was used as the surrogate marker for long term clinical outcome. Forty patients (age 59 ± 12 years, 84% males) were appraised. Late MVO had the strongest correlation with LVEF at 90 days compared to the CMR parameters of early MVO, stress infarct region MBF and rest infarct region MBF (r = −0.754, r = −0.588, r = 0.595 and r = 0.345 respectively). Of the angiographic parameters used to assess MVO, TMPG had the strongest relationship with MVO when assessed via CMR. Myocardial blush grade however showed no relationship to CMR derived assessment of MVO. On multivariate analysis, of all angiographic and CMR variables, late MVO was the strongest predictor of LVEF at 90 days (p = 0.004). Cardiac magnetic resonance imaging derived assessment of microvascular obstruction on late gadolinium enhancement strongly predicts left ventricular function following STEMI at 90 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

STEMI:

ST-segment elevation myocardial infarction

MVO:

Microvascular obstruction

CMR:

Cardiovascular magnetic resonance

MBF:

Myocardial blood flow

MBG:

Myocardial blush grade

TMPG:

TIMI myocardial perfusion grade

LVEF:

Left ventricular ejection fraction

LGE:

Late gadolinium enhancement

References

  1. Niccoli G, Burzotta F, Galiuto L, Crea F (2009) Myocardial no-reflow in humans. J Am Coll Cardiol 54(4):281–292. doi:10.1016/j.jacc.2009.03.054

    Article  PubMed  Google Scholar 

  2. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54(6):1496–1508. doi:10.1172/JCI107898

    Article  PubMed  CAS  Google Scholar 

  3. Wu KC, Zerhouni EA, Judd RM, Lugo-Olivieri CH, Barouch LA, Schulman SP, Blumenthal RS, Lima JA (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97(8):765–772

    Article  PubMed  CAS  Google Scholar 

  4. Bolognese L, Carrabba N, Parodi G, Santoro GM, Buonamici P, Cerisano G, Antoniucci D (2004) Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction. Circulation 109(9):1121–1126

    Article  PubMed  Google Scholar 

  5. Brosh D, Assali AR, Mager A, Porter A, Hasdai D, Teplitsky I, Rechavia E, Fuchs S, Battler A, Kornowski R (2007) Effect of no-reflow during primary percutaneous coronary intervention for acute myocardial infarction on six-month mortality. Am J Cardiol 99(4):442–445. doi:10.1016/j.amjcard.2006.08.054

    Article  PubMed  Google Scholar 

  6. van ‘t Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, Zijlstra F (1998) Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle myocardial infarction study group. Circulation 97(23):2302–2306

    Article  PubMed  Google Scholar 

  7. Gibson CM, Cannon CP, Murphy SA, Marble SJ, Barron HV, Braunwald E (2002) Relationship of the TIMI myocardial perfusion grades, flow grades, frame count, and percutaneous coronary intervention to long-term outcomes after thrombolytic administration in acute myocardial infarction. Circulation 105(16):1909–1913

    Article  PubMed  Google Scholar 

  8. Schroder R, Dissmann R, Bruggemann T, Wegscheider K, Linderer T, Tebbe U, Neuhaus KL (1994) Extent of early ST segment elevation resolution: a simple but strong predictor of outcome in patients with acute myocardial infarction. J Am Coll Cardiol 24(2):384–391

    Article  PubMed  CAS  Google Scholar 

  9. Kondo M, Nakano A, Saito D, Shimono Y (1998) Assessment of “microvascular no-reflow phenomenon” using technetium-99 m macroaggregated albumin scintigraphy in patients with acute myocardial infarction. J Am Coll Cardiol 32(4):898–903

    Article  PubMed  CAS  Google Scholar 

  10. Ito H, Okamura A, Iwakura K, Masuyama T, Hori M, Takiuchi S, Negoro S, Nakatsuchi Y, Taniyama Y, Higashino Y, Fujii K, Minamino T (1996) Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 93(11):1993–1999

    Article  PubMed  CAS  Google Scholar 

  11. Nijveldt R, Beek AM, Hofman MB, Umans VA, Algra PR, Spreeuwenberg MD, Visser CA, van Rossum AC (2007) Late gadolinium-enhanced cardiovascular magnetic resonance evaluation of infarct size and microvascular obstruction in optimally treated patients after acute myocardial infarction. J Cardiovasc Magn Reson 9(5):765–770

    Article  PubMed  Google Scholar 

  12. Nijveldt R, Beek AM, Hirsch A, Stoel MG, Hofman MB, Umans VA, Algra PR, Twisk JW, van Rossum AC (2008) Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J Am Coll Cardiol 52(3):181–189

    Article  PubMed  Google Scholar 

  13. Yan AT, Gibson CM, Larose E, Anavekar NS, Tsang S, Solomon SD, Reynolds G, Kwong RY (2006) Characterization of microvascular dysfunction after acute myocardial infarction by cardiovascular magnetic resonance first-pass perfusion and late gadolinium enhancement imaging. J Cardiovasc Magn Reson 8(6):831–837

    Article  PubMed  Google Scholar 

  14. de Waha S, Desch S, Eitel I, Fuernau G, Zachrau J, Leuschner A, Gutberlet M, Schuler G, Thiele H (2010) Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J 31(21):2660–2668. doi:10.1093/eurheartj/ehq247

    Article  PubMed  Google Scholar 

  15. Selvanayagam JB, Jerosch-Herold M, Porto I, Sheridan D, Cheng AS, Petersen SE, Searle N, Channon KM, Banning AP, Neubauer S (2005) Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation 112(21):3289–3296. doi:10.1161/CIRCULATIONAHA.105.549170

    Article  PubMed  Google Scholar 

  16. Gibson CM, Cannon CP, Murphy SA, Ryan KA, Mesley R, Marble SJ, McCabe CH, Van De Werf F, Braunwald E (2000) Relationship of TIMI myocardial perfusion grade to mortality after administration of thrombolytic drugs. Circulation 101(2):125–130

    Article  PubMed  CAS  Google Scholar 

  17. Lyne JC, Gatehouse PD, Assomull RG, Smith GC, Kellman P, Firmin DN, Pennell DJ (2007) Direct comparison of myocardial perfusion cardiovascular magnetic resonance sequences with parallel acquisition. J Magn Reson Imaging 26(6):1444–1451. doi:10.1002/jmri.21167

    Article  PubMed  Google Scholar 

  18. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10:35. doi:10.1186/1532-429X-10-35

    Article  PubMed  Google Scholar 

  19. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210. doi:10.1002/mrm.10171

    Article  PubMed  Google Scholar 

  20. Teo KS, Carbone A, Piantadosi C, Chew DP, Hammett CJ, Brown MA, Worthley SG (2008) Cardiac MRI assessment of left and right ventricular parameters in healthy Australian normal volunteers. Heart Lung Circ 17(4):313–317

    Article  PubMed  Google Scholar 

  21. Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106(18):2351–2357

    Article  PubMed  Google Scholar 

  22. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463. doi:10.1016/j.echo.2005.10.005

    Article  PubMed  Google Scholar 

  23. Klein P, Holman ER, Versteegh MI, Boersma E, Verwey HF, Bax JJ, Dion RA, Klautz RJ (2009) Wall motion score index predicts mortality and functional result after surgical ventricular restoration for advanced ischemic heart failure. Eur J Cardiothorac Surg 35(5):847–852; discussion 852-843. doi: 10.1016/j.ejcts.2008.12.046

    Google Scholar 

  24. Mather AN, Lockie T, Nagel E, Marber M, Perera D, Redwood S, Radjenovic A, Saha A, Greenwood JP, Plein S (2009) Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J Cardiovasc Magn Reson 11(1):33

    Article  PubMed  Google Scholar 

  25. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, Klimek W, Oswald H, Fleck E (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12):1379–1383

    Article  PubMed  CAS  Google Scholar 

  26. Amado LC, Gerber BL, Gupta SN, Rettmann DW, Szarf G, Schock R, Nasir K, Kraitchman DL, Lima JA (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389

    Article  PubMed  Google Scholar 

  27. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoher M, Kochs M, Wohrle J, Kestler HA (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 26(6):549–557

    Article  PubMed  Google Scholar 

  28. Gibson CM, Schomig A (2004) Coronary and myocardial angiography: angiographic assessment of both epicardial and myocardial perfusion. Circulation 109(25):3096–3105

    Article  PubMed  Google Scholar 

  29. Appelbaum E, Abraham JM, Pride YB, Harrigan CJ, Peters DC, Biller LH, Manning WJ, Gibson CM (2009) Association of thrombolysis in myocardial infarction myocardial perfusion grade with cardiovascular magnetic resonance measures of infarct architecture after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Am Heart J 158(1):84–91

    Article  PubMed  Google Scholar 

  30. Zun Z, Varadarajan P, Pai RG, Wong EC, Nayak KS (2011) Arterial spin Labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation. JACC Cardiovasc Imaging 4(12):1253–1261. doi:10.1016/j.jcmg.2011.06.023

    Article  PubMed  Google Scholar 

  31. Lund GK, Stork A, Saeed M, Bansmann MP, Gerken JH, Muller V, Mester J, Higgins CB, Adam G, Meinertz T (2004) Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232(1):49–57

    Article  PubMed  Google Scholar 

  32. Rochitte CE, Lima JA, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, Becker LC, Melin JA (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98(10):1006–1014

    Article  PubMed  CAS  Google Scholar 

  33. Mather AN, Lockie T, Nagel E, Marber M, Perera D, Redwood S, Radjenovic A, Saha A, Greenwood JP, Plein S (2009) Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J Cardiovasc Magn Reson 11:33. doi:10.1186/1532-429X-11-33

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Mr Thomas Sullivan; Statistician, Data Management & Analysis Centre. Discipline of Public Health, University of Adelaide for his assistance with statistical analysis. DW is supported by NHMRC and NHF Post Graduate Scholarship. MW is supported by SA Health Practitioner Fellowship.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Worthley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, D.T.L., Leung, M.C.H., Richardson, J.D. et al. Cardiac magnetic resonance derived late microvascular obstruction assessment post ST-segment elevation myocardial infarction is the best predictor of left ventricular function: a comparison of angiographic and cardiac magnetic resonance derived measurements. Int J Cardiovasc Imaging 28, 1971–1981 (2012). https://doi.org/10.1007/s10554-012-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-012-0021-9

Keywords

Navigation