Skip to main content
Log in

The use of echocardiography in Wolff–Parkinson–White syndrome

  • Original paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Endocardial mapping and radiofrequency catheter ablation are well established modalities for the diagnosis and treatment of patients with Wolff–Parkinson–White (WPW) syndrome associated with tachyarrhythmias. However, the electrophysiologic techniques are invasive, require radiation exposure, and lack spatial resolution of cardiac structures. A variety of echocardiographic techniques have been investigated as a non-invasive alternative for accessory pathway localization. Conventional M-mode echocardiography can detect the fine premature wall motion abnormalities associated with WPW syndrome. However, it is unable to identify the exact site of accessory pathway with sufficient accuracy. 2D, 2D-guided M-mode, and 2D phase analysis techniques are limited by image quality and endocardial border definition. Various modalities of tissue Doppler echocardiography significantly increase the accuracy of left-sided accessory pathway localization to 80–90% even in patients with poor acoustic window. However, right-sided pathways remain a diagnostic challenge. Strain echocardiography by speckle tracking has recently been evaluated and appears promising. Different cardiac abnormalities have been detected by echocardiography in WPW patients. Patients with WPW syndrome and tachyarrhythmias have impaired systolic and diastolic function which improves after radiofrequency ablation. Echocardiography is useful in identifying patient with accessory pathway-associated left ventricular dyssynchrony and dysfunction who may benefit from ablation therapy. Transesophageal and intracardiac echocardiography have been used to guide ablation procedure. Ablation-related complications detected by routine echocardiography are infrequent, rarely clinically relevant, and of limited value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

WPW syndrome:

Wolff–Parkinson–White syndrome

RFCA:

Radiofrequency catheter ablation

ECG:

Electrocardiography

LV:

Left ventricle

2D:

2-dimensional

TEE:

Transesophageal echocardiography

EF:

Ejection fraction

AVRT:

Atrioventricular reentry tachycardia

References

  1. Jackman WM et al (1991) Catheter ablation of accessory atrioventricular pathways (Wolff–Parkinson–White syndrome) by radiofrequency current. N Engl J Med 324(23):1605–1611

    Article  PubMed  CAS  Google Scholar 

  2. Gallagher JJ et al (1978) The preexcitation syndromes. Prog Cardiovasc Dis 20(4):285–327

    Article  PubMed  CAS  Google Scholar 

  3. Giorgi C et al (1991) Body surface isopotential mapping of the entire QRST complex in the Wolff–Parkinson–White syndrome. Correlation with the location of the accessory pathway. Am Heart J 121(5):1445–1453

    Article  PubMed  CAS  Google Scholar 

  4. Botvinick E et al (1984) Phase image evaluation of patients with ventricular pre-excitation syndromes. J Am Coll Cardiol 3(3):799–814

    Article  PubMed  CAS  Google Scholar 

  5. Nagai H et al (1999) Two-dimensional guided M-mode color tissue Doppler echocardiography in artificial preexcitation models. J Am Soc Echocardiogr 12(7):582–589

    Article  PubMed  CAS  Google Scholar 

  6. Pehrson S et al (1998) Improvement of echocardiographic M-Mode detection of ventricular precontraction in the Wolff–Parkinson–White Syndrome by transesophageal atrial pacing. Echocardiography 15(5):479–488

    Article  PubMed  Google Scholar 

  7. Windle JR et al (1986) Determination of the earliest site of ventricular activation in Wolff–Parkinson–White syndrome: application of digital continuous loop two-dimensional echocardiography. J Am Coll Cardiol 7(6):1286–1294

    Article  PubMed  CAS  Google Scholar 

  8. Kuecherer HF et al (1992) Two-dimensional echocardiographic phase analysis. Its potential for noninvasive localization of accessory pathways in patients with Wolff–Parkinson–White syndrome. Circulation 85(1):130–142

    Article  PubMed  CAS  Google Scholar 

  9. Kuecherer HF et al (1996) Transesophageal echo phase imaging for localizing accessory pathways during adenosine-induced preexcitation in patients with the Wolff–Parkinson–White syndrome. Am J Cardiol 77(1):64–71

    Article  PubMed  CAS  Google Scholar 

  10. Ren JF et al (1998) Intracardiac echocardiographic imaging in guiding and monitoring radiofrequency catheter ablation at the tricuspid annulus. Echocardiography 15(7):661–664

    Article  PubMed  Google Scholar 

  11. Citro R et al (2004) Intracardiac echocardiography to guide transseptal catheterization for radiofrequency catheter ablation of left-sided accessory pathways: two case reports. Cardiovasc Ultrasound 2:20

    Article  PubMed  Google Scholar 

  12. Matsumoto K et al (1993) Use of biplane transesophageal echocardiographic guide in radiofrequency catheter ablation of Wolff–Parkinson–White syndrome with left side Kent bundle. Jpn Circ J 57(8):832–836

    Article  PubMed  CAS  Google Scholar 

  13. Hamilton K et al (1996) Echocardiographic demonstration of coronary sinus diverticula in patients with Wolff–Parkinson–White syndrome. J Am Soc Echocardiogr 9(3):337–343

    Article  PubMed  CAS  Google Scholar 

  14. Duszanska A et al (2007) The influence of atrioventricular and atrioventricular nodal re-entrant tachycardia on left ventricular systolic and diastolic function. Cardiol J 14(2):160–166

    PubMed  Google Scholar 

  15. Vaskelyte J, Bredikis J (1992) Correlations between the localization of accessory atrioventricular pathway and Doppler indices of left ventricular output and function in patients with Wolff–Parkinson–White syndrome. Pacing Clin Electrophysiol 15(3):268–273

    Article  PubMed  CAS  Google Scholar 

  16. Duszanska A et al (2008) Evaluation of left ventricular systolic and diastolic function in patients with atrioventricular re-entrant tachycardia treated by radiofrequency current ablation. Acta Cardiol 63(2):221–227

    Article  PubMed  Google Scholar 

  17. Tomaske M et al (2008) Adverse effects of Wolff–Parkinson–White syndrome with right septal or posteroseptal accessory pathways on cardiac function. Europace 10(2):181–189

    Article  PubMed  Google Scholar 

  18. Eksik A et al (2004) Sequential evaluation of left ventricular systolic and diastolic function after radiofrequency catheter ablation. Jpn Heart J 45(3):429–440

    Article  PubMed  Google Scholar 

  19. Olsson A et al (1999) Frequency and long term follow up of valvar insufficiency caused by retrograde aortic radiofrequency catheter ablation procedures. Heart 81(3):292–296

    PubMed  CAS  Google Scholar 

  20. Pires LA et al (1996) Clinical utility of routine transthoracic echocardiographic studies after uncomplicated radiofrequency catheter ablation: a prospective multicenter study. The Atakr Investigators Group. Pacing Clin Electrophysiol 19(10):1502–1507

    Article  PubMed  CAS  Google Scholar 

  21. Sasse L, Del Puerto HA (1976) Echocardiography of ventricular septal movement in Wolff–Parkinson–White syndrome. Arch Inst Cardiol Mex 46(4):445–450

    PubMed  CAS  Google Scholar 

  22. Okumura M, Okajima S, Sotobata I (1980) Non-invasive localization of the pre-excitation site in patients with the Wolff–Parkinson–White syndrome. Vectorcardiographic and echocardiographic correlations. Jpn Heart J 21(2):157–169

    Article  PubMed  CAS  Google Scholar 

  23. Reddy GV, Schamroth L (1987) The localization of bypass tracts in the Wolff–Parkinson–White syndrome from the surface electrocardiogram. Am Heart J 113(4):984–993

    Article  PubMed  CAS  Google Scholar 

  24. Gimbel KS (1977) Left ventricular posterior wall motion in patients with the Wolff–Parkinson–White syndrome. Am Heart J 93(2):160–171

    Article  PubMed  CAS  Google Scholar 

  25. Hishida H et al (1976) Echocardiographic patterns of ventricular contraction in the Wolff–Parkinson–White syndrome. Circulation 54(4):567–570

    Article  PubMed  CAS  Google Scholar 

  26. Francis GS et al (1976) An echocardiographic study of interventricular septal motion in the Wolff–Parkinson–White syndrome. Circulation 54(2):174–178

    Article  PubMed  CAS  Google Scholar 

  27. DeMaria AN, Mason DT (1977) Echocardiographic evaluation of disturbances of cardiac rhythm and conduction. Chest 71(4):439–440

    Article  PubMed  CAS  Google Scholar 

  28. DeMaria AN et al (1976) Alterations in ventricular contraction pattern in the Wolff–Parkinson–White syndrome. Detection by echocardiography. Circulation 53(2):249–257

    Article  PubMed  CAS  Google Scholar 

  29. Hina K et al (1999) Decreased amplitude of left ventricular posterior wall motion with notch movement to determine the left posterior septal accessory pathway in Wolff–Parkinson–White syndrome. Heart 82(6):731–739

    PubMed  CAS  Google Scholar 

  30. Ticzon AR et al (1976) Interventricular septal motion during preexcitation and normal conduction in Wolff–Parkinson–White syndrome: echocardiographic and electrophysiologic correlation. Am J Cardiol 37(6):840–847

    Article  PubMed  CAS  Google Scholar 

  31. McDonald IG (1973) Echocardiographic demonstration of abnormal motion of the interventricular septum in left bundle branch block. Circulation 48(2):272–280

    Article  PubMed  CAS  Google Scholar 

  32. Lebovitz JA et al (1977) Relationship between the electrical (electrocardiographic) and mechanical (echocardiographic) events in Wolff–Parkinson–White syndrome. Chest 71(4):463–469

    Article  PubMed  CAS  Google Scholar 

  33. Okumura M et al (1979) Echocardiographic evaluation of right ventricular anterior wall motion in the Wolff–Parkinson–White syndrome. Jpn Heart J 20(5):577–585

    Article  PubMed  CAS  Google Scholar 

  34. Sutherland GR et al (1994) Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 7(5):441–458

    PubMed  CAS  Google Scholar 

  35. Miyatake K et al (1995) New method for evaluating left ventricular wall motion by color-coded tissue Doppler imaging: in vitro and in vivo studies. J Am Coll Cardiol 25(3):717–724

    Article  PubMed  CAS  Google Scholar 

  36. Miyasaka Y et al (2003) A simple and accurate method to identify early ventricular contraction sites in Wolff–Parkinson–White syndrome using high frame-rate tissue-velocity imaging. Am J Cardiol 92(5):617–620

    Article  PubMed  Google Scholar 

  37. Nagai H et al (1999) Detection of the earliest ventricular contraction site in patients with Wolff–Parkinson–White syndrome using two-dimensional guided M-mode tissue Doppler echocardiography. Cardiology 92(3):189–195

    Article  PubMed  CAS  Google Scholar 

  38. Nakayama K et al (1998) Application of tissue Doppler imaging technique in evaluating early ventricular contraction associated with accessory atrioventricular pathways in Wolff–Parkinson–White syndrome. Am Heart J 135(1):99–106

    Article  PubMed  CAS  Google Scholar 

  39. Tuchnitz A et al (1999) Noninvasive localization of accessory pathways in patients with Wolff–Parkinson–White syndrome with the use of myocardial Doppler imaging. J Am Soc Echocardiogr 12(1):32–40

    Article  PubMed  CAS  Google Scholar 

  40. Caso P et al (2002) Assessment of accessory atrioventricular pathways by Doppler myocardial imaging. Echocardiography 19(5):373–381

    Article  PubMed  Google Scholar 

  41. Yin LX et al (1999) Ventricular excitation maps using tissue Doppler acceleration imaging: potential clinical application. J Am Coll Cardiol 33(3):782–787

    Article  PubMed  CAS  Google Scholar 

  42. Eder V et al (2000) Localization of the ventricular preexcitation site in Wolff–Parkinson–White syndrome with Doppler tissue imaging. J Am Soc Echocardiogr 13(11):995–1001

    Article  PubMed  CAS  Google Scholar 

  43. Zhang M, Zhou QC, Fan P (2001) Location of the pre-excitation part in Wolff–Parkinson–White syndrome by Doppler tissue imaging. Hunan Yi Ke Da Xue Xue Bao 26(6):540–542

    PubMed  CAS  Google Scholar 

  44. Cohen TJ et al (1992) Usefulness of adenosine in augmenting ventricular preexcitation for noninvasive localization of accessory pathways. Am J Cardiol 69(14):1178–1185

    Article  PubMed  CAS  Google Scholar 

  45. Wood MA, DiMarco JP, Haines DE (1992) Electrocardiographic abnormalities after radiofrequency catheter ablation of accessory bypass tracts in the Wolff–Parkinson–White syndrome. Am J Cardiol 70(2):200–204

    Article  PubMed  CAS  Google Scholar 

  46. De Boeck BW et al (2008) Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: rationale and design of a novel software toolbox. Cardiovasc Ultrasound 6:22

    Article  PubMed  Google Scholar 

  47. Seo MK et al (2011) Synchronicity of LV contraction as a determinant of LV twist mechanics serial speckle-tracking analyses in WPW syndrome before and after radiofrequency catheter ablation. JACC Cardiovasc Imaging 4(4):338–347

    Article  PubMed  Google Scholar 

  48. Chandra MS et al (1976) Echocardiography in Wolff–Parkinson–White syndrome. Circulation 53(6):943–946

    Article  PubMed  CAS  Google Scholar 

  49. Ahmed CM, Banerjeel SK, Sarma AK (2006) Atrial septal aneurysm associated with Wolf Parkinson White (WPW) syndrome: a case report. Bangladesh Med Res Counc Bull 32(1):35–37

    PubMed  CAS  Google Scholar 

  50. Willens HJ, Kessler KM (1996) Atrial septal aneurysm and dilated sinus of valsalva in a patient with Wolff–Parkinson–White syndrome. Echocardiography 13(1):91–94

    Article  PubMed  Google Scholar 

  51. Moceri P et al (2008) Left ventricular non-compaction associated with Wolff–Parkinson–White syndrome: echo, contrast-echo and cardiovascular magnetic-resonance data. Arch Cardiovasc Dis 101(7–8):503–505

    Article  PubMed  Google Scholar 

  52. Snyder CS et al (2003) Usefulness of echocardiography in infants with supraventricular tachycardia. Am J Cardiol 91(10):1277–1279

    Article  PubMed  Google Scholar 

  53. Gerlis LM et al (1985) Pre-excitation due to accessory sinoventricular connexions associated with coronary sinus aneurysms. a report of two cases. Br Heart J 53(3):314–322

    Article  PubMed  CAS  Google Scholar 

  54. Guiraudon GM et al (1988) The coronary sinus diverticulum: a pathologic entity associated with the Wolff–Parkinson–White syndrome. Am J Cardiol 62(10 Pt 1):733–735

    Article  PubMed  CAS  Google Scholar 

  55. Cakmak N et al (2008) Effects of radiofrequency catheter ablation on myocardial performance index and plasma NT-Pro-BNP levels in patients with Wolff–Parkinson–White syndrome. Echocardiography 25(7):692–698

    Article  PubMed  Google Scholar 

  56. Duszanska A et al (2007) Doppler predictors of inducibility of atrial fibrillation in patients with WPW syndrome and atrioventricular re-entrant tachycardia. Acta Cardiol 62(6):615–621

    Article  PubMed  Google Scholar 

  57. Cakmak N et al (2007) Effect of radiofrequency catheter ablation on Doppler echocardiographic parameters in patients with Wolff–Parkinson–White syndrome. Int Heart J 48(2):165–175

    Article  PubMed  Google Scholar 

  58. Iwasaku T et al (2009) Successful catheter ablation to accessory atrioventricular pathway as cardiac resynchronization therapy in a patient with dilated cardiomyopathy. Europace 11(1):121–123

    Article  PubMed  Google Scholar 

  59. Yamanaka S et al (1998) Improved cardiac function after catheter ablation in a patient with type B Wolff–Parkinson–White syndrome with an old myocardial infarction. Jpn Circ J 62(11):860–862

    Article  PubMed  CAS  Google Scholar 

  60. Martsinkevich GI et al (2007) Effect of radiofrequency ablation of accessory atrio-ventricular junctions on electromechanical coupling of the myocardium in children with manifesting Wolf-Parkinson-White syndrome. Kardiologiia 47(5):46–49

    PubMed  CAS  Google Scholar 

  61. De Boeck BW et al (2010) Detection and quantification by deformation imaging of the functional impact of septal compared to free wall preexcitation in the Wolff–Parkinson–White syndrome. Am J Cardiol 106(4):539–546e2

    Article  PubMed  Google Scholar 

  62. Chu E et al (1994) Radiofrequency catheter ablation guided by intracardiac echocardiography. Circulation 89(3):1301–1305

    Article  PubMed  CAS  Google Scholar 

  63. Lai WW et al (1993) Biplanar transesophageal echocardiographic direction of radiofrequency catheter ablation in children and adolescents with the Wolff–Parkinson–White syndrome. Am J Cardiol 71(10):872–874

    Article  PubMed  CAS  Google Scholar 

  64. Tucker KJ et al (1996) Transesophageal echocardiographic guidance of transseptal left heart catheterization during radiofrequency ablation of left-sided accessory pathways in humans. Pacing Clin Electrophysiol 19(3):272–281

    Article  PubMed  CAS  Google Scholar 

  65. Khaykin Y, Klemm O, Verma A (2008) First human experience with real-time integration of intracardiac echocardiography and 3D electroanatomical imaging to guide right free wall accessory pathway ablation. Europace 10(1):116–117

    Article  PubMed  Google Scholar 

  66. Clark J et al (2008) Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing Clin Electrophysiol 31(3):283–289

    Article  PubMed  Google Scholar 

  67. Voci P et al (1994) Coronary air embolism complicating accessory pathway catheter ablation: detection by echocardiography. J Am Soc Echocardiogr 7(3 Pt 1):312–314

    PubMed  CAS  Google Scholar 

  68. Gill KS et al (2001) Left ventricular pseudoaneurysm as a complication of electrophysiologic study. J Am Soc Echocardiogr 14(3):228–230

    Article  PubMed  CAS  Google Scholar 

  69. Seifert MJ et al (1991) Aortic leaflet perforation during radiofrequency ablation. Pacing Clin Electrophysiol 14(11 Pt 1):1582–1585

    Article  PubMed  CAS  Google Scholar 

  70. Neuzner J et al (1995) Incidence of intervention-related heart valve lesions after high-frequency catheter ablation of the left-side accessory atrioventricular conduction pathways. Z Kardiol 84(12):1002–1008

    PubMed  CAS  Google Scholar 

  71. Thakur RK et al (1994) Complications of radiofrequency catheter ablation: a review. Can J Cardiol 10(8):835–839

    PubMed  CAS  Google Scholar 

  72. Frias PA et al (1999) Low incidence of significant valvar insufficiency following retrograde aortic radiofrequency catheter ablation in young patients. J Interv Card Electrophysiol 3(2):181–185

    Article  PubMed  CAS  Google Scholar 

  73. Van Hare GF et al. (2007) Prospective assessment after pediatric cardiac ablation: fate of intracardiac structure and function, as assessed by serial echocardiography. Am Heart J 153(5): 815–820, 1–6

    Google Scholar 

  74. Schaer BA et al (2009) Routine echocardiography after radiofrequency ablation: to flog a dead horse? Europace 11(2):155–157

    Article  PubMed  Google Scholar 

  75. Goli VD et al (1991) Transesophageal echocardiographic evaluation for mural thrombus following radiofrequency catheter ablation of accessory pathways. Pacing Clin Electrophysiol 14(11 Pt 2):1992–1997

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangjun Cai.

Additional information

Qiangjun Cai and Mossaab Shuraih contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Q., Shuraih, M. & Nagueh, S.F. The use of echocardiography in Wolff–Parkinson–White syndrome. Int J Cardiovasc Imaging 28, 725–734 (2012). https://doi.org/10.1007/s10554-011-9880-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-011-9880-8

Keywords

Navigation