Skip to main content
Log in

Differential associations between blood biomarkers of inflammation, oxidation, and lipid metabolism with varying forms of coronary atherosclerotic plaque as quantified by coronary CT angiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Although epidemiologic data link biomarkers of cardiovascular risk with incident and prevalent coronary artery disease, exact anatomic relationships between biomarkers and coronary atherosclerosis as measured by coronary CT angiography remain unclear. Patients with acute chest pain who ultimately had no evidence of acute coronary syndrome underwent contrast-enhanced 64-slice coronary CT angiography to determine presence, extent and composition of coronary atherosclerotic plaque. We determined the differences in levels of blood biomarkers measured at the time of the CT scan between different CT-based atherosclerotic plaque groups. Among 313 patients (mean age: 51.6 ± 11 years, 62% male) high-sensitivity C-reactive protein (hs-CRP) and matrix metalloproteinase-2 were associated with the extent of calcified plaque (P = 0.03 and P < 0.001), while hs-CRP and apolipoprotein A1 were associated with the extent of non-calcified plaque (P = 0.03 and P = 0.004; respectively). Despite a generally lower risk profile, subjects with exclusively non-calcified plaque had significantly higher levels of hs-CRP and oxidized low-density lipoprotein (P = 0.01 and P = 0.03; respectively) and lower levels of adiponectin (P = 0.03) when compared to subjects with calcified plaque (n = 130, 42%). Biomarkers reflecting inflammation, vascular remodeling, oxidation, and lipoprotein metabolism maybe associated with different patterns of coronary atherosclerosis as quantified by coronary CT angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113(19):2335–2362

    Article  PubMed  Google Scholar 

  2. Koenig W, Khuseyinova N (2007) Biomarkers of atherosclerotic plaque instability and rupture. Arterioscler Thromb Vasc Biol 27(1):15–26

    Article  PubMed  CAS  Google Scholar 

  3. Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, Guerci AD, Lima JA, Rader DJ, Rubin GD, Shaw LJ, Wiegers SE (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114 (16):1761–1791

    Google Scholar 

  4. Hoffmann U, Bamberg F, Chae CU, Nichols JH, Rogers IS, Seneviratne SK, Truong QA, Cury RC, Abbara S, Shapiro MD, Moloo J, Butler J, Ferencik M, Lee H, Jang IK, Parry BA, Brown DF, Udelson JE, Achenbach S, Brady TJ, Nagurney JT (2009) Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol 53(18):1642–1650

    Article  PubMed  Google Scholar 

  5. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB (1975) A reporting system on patients evaluated for coronary artery disease. Report of the ad hoc committee for grading of coronary artery disease, council on cardiovascular surgery, American Heart Association. Circulation 51(4 Suppl):5–40

  6. Achenbach S, Moselewski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, Pohle K, Baum U, Anders K, Jang I-K, Daniel WG, Brady TJ (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109(1):14–17

    Article  PubMed  Google Scholar 

  7. Hoffmann U, Nagurney JT, Bamberg F, Pena A, Ferencik M, Chae CU, Cury RC, Butler J, Abbara S, Brown DF, Manini A, Nichols JH, Achenbach S, Brady TJ (2006) Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation 114(21):2251–2260

    Article  PubMed  Google Scholar 

  8. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB (1998) Prediction of coronary heart disease using risk factor categories. Circulation 97(18):1837–1847

    PubMed  CAS  Google Scholar 

  9. Barrodale I, Roberts FDK (1973) An improved algorithm for discrete l 1 linear approximation. SIAM J Num Anal 10:839–848

    Article  Google Scholar 

  10. Khera A, de Lemos JA, Peshock RM, Lo HS, Stanek HG, Murphy SA, Wians FH Jr, Grundy SM, McGuire DK (2006) Relationship between C-reactive protein and subclinical atherosclerosis: the Dallas Heart Study. Circulation 113(1):38–43

    Article  PubMed  CAS  Google Scholar 

  11. Redberg RF, Rifai N, Gee L, Ridker PM (2000) Lack of association of C-reactive protein and coronary calcium by electron beam computed tomography in postmenopausal women: implications for coronary artery disease screening. J Am Coll Cardiol 36(1):39–43

    Article  PubMed  CAS  Google Scholar 

  12. Hunt ME, O’Malley PG, Vernalis MN, Feuerstein IM, Taylor AJ (2001) C-reactive protein is not associated with the presence or extent of calcified subclinical atherosclerosis. Am Heart J 141(2):206–210

    Article  PubMed  CAS  Google Scholar 

  13. Wang TJ, Larson MG, Levy D, Benjamin EJ, Kupka MJ, Manning WJ, Clouse ME, D’Agostino RB, Wilson PW, O’Donnell CJ (2002) C-reactive protein is associated with subclinical epicardial coronary calcification in men and women: the Framingham Heart Study. Circulation 106(10):1189–1191

    Article  PubMed  CAS  Google Scholar 

  14. Sukhija R, Fahdi I, Garza L, Fink L, Scott M, Aude W, Pacheco R, Bursac Z, Grant A, Mehta JL (2007) Inflammatory markers, angiographic severity of coronary artery disease, and patient outcome. Am J Cardiol 99(7):879–884

    Article  PubMed  CAS  Google Scholar 

  15. McDermott MM, Ferrucci L, Guralnik JM, Tian L, Green D, Liu K, Tan J, Liao Y, Pearce WH, Schneider JR, Ridker P, Rifai N, Hoff F, Criqui MH (2007) Elevated levels of inflammation, d-dimer, and homocysteine are associated with adverse calf muscle characteristics and reduced calf strength in peripheral arterial disease. J Am Coll Cardiol 50(9):897–905

    Article  PubMed  CAS  Google Scholar 

  16. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, Keaney JF Jr, Meigs JB, Lipinska I, Kathiresan S, Murabito JM, O’Donnell CJ, Benjamin EJ, Fox CS (2007) Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 116(11):1234–1241

    Article  PubMed  CAS  Google Scholar 

  17. Djaberi R, Schuijf JD, van Werkhoven JM, Nucifora G, Jukema JW, Bax JJ (2008) Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol 102(12):1602–1607

    Article  PubMed  Google Scholar 

  18. Khoury Z, Schwartz R, Gottlieb S, Chenzbraun A, Stern S, Keren A (1997) Relation of coronary artery disease to atherosclerotic disease in the aorta, carotid, and femoral arteries evaluated by ultrasound. Am J Cardiol 80(11):1429–1433

    Article  PubMed  CAS  Google Scholar 

  19. Singh IM, Shishehbor MH, Ansell BJ (2007) High-density lipoprotein as a therapeutic target: a systematic review. JAMA 298(7):786–798

    Article  PubMed  CAS  Google Scholar 

  20. Reilly MP, Wolfe ML, Localio AR, Rader DJ (2003) C-reactive protein and coronary artery calcification: the study of inherited risk of coronary atherosclerosis (SIRCA). Arterioscler Thromb Vasc Biol 23(10):1851–1856

    Google Scholar 

  21. Musicant SE, Taylor LM Jr, Peters D, Schuff RA, Urankar R, Landry GJ, Moneta GL (2006) Prospective evaluation of the relationship between C-reactive protein, D-dimer and progression of peripheral arterial disease. J Vasc Surg 43(4):772–780 (discussion 780)

    Google Scholar 

  22. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1998) Plasma concentration of C-reactive protein and risk of developing peripheral vascular disease. Circulation 97(5):425–428

    PubMed  CAS  Google Scholar 

  23. Schmid M, Achenbach S, Ropers D, Komatsu S, Ropers U, Daniel WG, Pflederer T (2008) Assessment of changes in non-calcified atherosclerotic plaque volume in the left main and left anterior descending coronary arteries over time by 64-slice computed tomography. Am J Cardiol 101(5):579–584. doi:10.1016/j.amjcard.2007.10.016

    Article  PubMed  Google Scholar 

  24. Pundziute G, Schuijf JD, Jukema JW, Boersma E, de Roos A, van der Wall EE, Bax JJ (2007) Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol 49(1):62–70

    Article  PubMed  Google Scholar 

  25. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circulation 92(5):1355–1374

    Google Scholar 

  26. Bamberg F, Dannemann N, Shapiro MD, Seneviratne SK, Ferencik M, Butler J, Koenig W, Nasir K, Cury RC, Tawakol A, Achenbach S, Brady TJ, Hoffmann U (2008) Association between cardiovascular risk profiles and the presence and extent of different types of coronary atherosclerotic plaque as detected by multidetector computed tomography. Arterioscler Thromb Vasc Biol 28(3):568–574

    Article  PubMed  CAS  Google Scholar 

  27. Hoffmann U, Moselewski F, Nieman K, Jang IK, Ferencik M, Rahman AM, Cury RC, Abbara S, Joneidi-Jafari H, Achenbach S, Brady TJ (2006) Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol 47(8):1655–1662

    Article  PubMed  Google Scholar 

  28. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326

    Article  PubMed  Google Scholar 

  29. Tsimikas S, Willerson JT, Ridker PM (2006) C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol 47(8 Suppl):C19–C31

    Article  PubMed  CAS  Google Scholar 

  30. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358(13):1336–1345

    Article  PubMed  CAS  Google Scholar 

  31. Sattar N, Wannamethee G, Sarwar N, Tchernova J, Cherry L, Wallace AM, Danesh J, Whincup PH (2006) Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation 114(7):623–629

    Article  PubMed  CAS  Google Scholar 

  32. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359(21):2195–2207

    Article  PubMed  CAS  Google Scholar 

  33. Holvoet P, Theilmeier G, Shivalkar B, Flameng W, Collen D (1998) LDL hypercholesterolemia is associated with accumulation of oxidized LDL, atherosclerotic plaque growth, and compensatory vessel enlargement in coronary arteries of miniature pigs. Arterioscler Thromb Vasc Biol 18(3):415–422

    Google Scholar 

  34. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343(6258):531–535

    Article  PubMed  CAS  Google Scholar 

  35. Matsumoto T, Takashima H, Ohira N, Tarutani Y, Yasuda Y, Yamane T, Matsuo S, Horie M (2004) Plasma level of oxidized low-density lipoprotein is an independent determinant of coronary macrovasomotor and microvasomotor responses induced by bradykinin. J Am Coll Cardiol 44(2):451–457

    Article  PubMed  CAS  Google Scholar 

  36. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22(10):1649–1654

    Article  PubMed  CAS  Google Scholar 

  37. Torzewski M, Rist C, Mortensen RF, Zwaka TP, Bienek M, Waltenberger J, Koenig W, Schmitz G, Hombach V, Torzewski J (2000) C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol 20(9):2094–2099

    Article  PubMed  CAS  Google Scholar 

  38. Hausleiter J, Meyer T, Hadamitzky M, Kastrati A, Martinoff S, Schomig A (2006) Prevalence of noncalcified coronary plaques by 64-slice computed tomography in patients with an intermediate risk for significant coronary artery disease. J Am Coll Cardiol 48(2):312–318

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gerlinde Trischler for excellent technical assistance of the blood biomarker measurements. This work was supported by the NIH (R01 HL080053), and in part supported by Siemens Medical Solutions and General Electrics Healthcare. Dr. Januzzi is supported in part by the Balson Scholar Fund. Dr. Schlett is supported in part by the German National Merit Foundation and the ERP Scholarship.

Conflict of interest

Dr. Januzzi has received grant support from Roche Diagnostics, Siemens Diagnostics, and Critical Diagnostics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Bamberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bamberg, F., Truong, Q.A., Koenig, W. et al. Differential associations between blood biomarkers of inflammation, oxidation, and lipid metabolism with varying forms of coronary atherosclerotic plaque as quantified by coronary CT angiography. Int J Cardiovasc Imaging 28, 183–192 (2012). https://doi.org/10.1007/s10554-010-9773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-010-9773-2

Keywords

Navigation