Skip to main content
Log in

How reliable are 40 MHz IVUS and 64-slice MDCT in characterizing coronary plaque composition? An ex vivo study with histopathological comparison

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The present study investigated whether IVUS could serve as a reliable reference in validating MDCT characterization of coronary plaque against a histological gold standard. Twenty-one specimens were postmortem human coronary arteries. Coronary cross-sections were imaged by 40 MHz IVUS and by 64-slice MDCT and characterized histologically as presenting calcified, fibrous or lipid-rich plaques. Plaque composition was analyzed visually and intra-plaque MDCT attenuation was measured in Hounsfield Units (HU). 83 atherosclerotic plaques were identified. IVUS failed to characterize calcified plaque accurately, with a positive predictive value (ppv) of 75% versus 100% for MDCT. Lipid-rich plaque was even less accurately characterized, with ppv of 60 and 68% for IVUS and MDCT respectively. Mean MDCT attenuation was 966 ± 473 HU for calcified plaque, 83 ± 35 HU for fibrous plaque and 70.92 HU ± 41 HU for lipid-rich plaque. No significant difference in mean MDCT attenuation was found between fibrous and lipid-rich plaques (P = 0.276). In vivo validation of MDCT against an IVUS reference thus appears to be an unsuitable and unreliable approach: 40 MHz IVUS suffers from acoustic ambiguities in plaque characterization, and 64-slice MDCT fails to analyze plaque morphology and components accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 104:365–372

    CAS  PubMed  Google Scholar 

  2. Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden cardiac death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    CAS  PubMed  Google Scholar 

  3. Glaglov S, Weisenberg E, Zarins C et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Eng J Med. 316:1371–1375

    Google Scholar 

  4. Mintz GS, Nissen SE, Anderson WD et al (2001) American college of cardiology clinical expert consensus on standards for acquisition, measurements and reporting of intravascular studies. A report of the American College of Cardiology task force on clinical expert consensus document. JACC 37–5:1478–1492

    Google Scholar 

  5. Se Nissen, Gurley CL, Grnies CL et al (1991) Intravascular assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 84:1087–1099

    Google Scholar 

  6. Di Mario C, Te SH, Madretsma S et al (1992) Detection and characterization of vascular lesions by intravascular ultrasound: an in vitro study correlated with histology. J Am Soc Echocardiogr 5:135–146

    CAS  PubMed  Google Scholar 

  7. Rasheed Q, Nair R, Sheehan H et al (1994) Correlation of intracoronary ultrasound plaque characteristics in atherosclerotic coronary artery disease patients with clinical variables. Am J Cardiol 73:753–758

    Article  CAS  PubMed  Google Scholar 

  8. Palmer ND, Northridge D, Lessels A et al (1999) In vitro analysis of coronary atheromatous lesions by intravascular ultrasound. Eur Heart J 20:1701–1706

    Article  CAS  PubMed  Google Scholar 

  9. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation. 107:664–666

    Article  PubMed  Google Scholar 

  10. Burgstahler C, Reimann A, Beck T et al (2007) Influence of a lipid-lowering therapy on calcified and noncalcified coronary plaques monitored by multislice detector computed tomography: results of the New Age II Pilot Study. Invest Radiol 42:196–203

    Article  PubMed  CAS  Google Scholar 

  11. Leber AW, Knez A, Becker A et al (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol 43:1241–1247

    Article  PubMed  Google Scholar 

  12. Molewsky F, Ropers D, Pohle K et al (2004) Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice computed tomography versus intravascular ultrasound. Am J Cardiol 94:1294–1297

    Article  Google Scholar 

  13. Achenbach S, Ropers D, Hoffmann U et al (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43:842–847

    Article  PubMed  Google Scholar 

  14. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  15. Carrascosa PM, Capunay CM, Garcia-Merletti P et al (2006) Characterization of coronary atherosclerotic plaque by multidetector computed tomography. Am J Cardiol 97:598–602

    Article  PubMed  Google Scholar 

  16. Pohle K, Achenbach S, MacNeil B et al (2006) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis. 190(1):174–180

    Article  PubMed  CAS  Google Scholar 

  17. Iriart X, Brunot S, Coste P et al (2007) Early characterization of atherosclerotic coronary plaques with multidetector computed tomography in patients with acute coronary syndrome: A comparative study with intravascular ultrasound. Eur Radiol 17(10):2581–2588

    Article  PubMed  Google Scholar 

  18. Becker CR, Nikolaou K, Muders M et al (2003) Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. Eur Radiol 13:2094–2098

    Article  PubMed  Google Scholar 

  19. Viles-Gonzalez JF, Poon M, Sanz J et al (2004) In vivo 16-slice, multidetector-row computed tomography for the assessment of experimental atherosclerosis: comparison with magnetic resonance imaging and histopathology. Circulation. 110:1467–1472

    Article  PubMed  Google Scholar 

  20. Nikolaou K, Becker CR, Muders M et al (2004) Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis. 174:243–252

    CAS  PubMed  Google Scholar 

  21. Schroeder S, Kuettner A, Leitritz M et al (2004) Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology. J Comput Assist Tomogr 28:449–454

    Article  PubMed  Google Scholar 

  22. Ferencik M, Chan RC, Achenbach S et al (2006) Arterial wall imaging: evaluation with 16-section multidetector CT in blood vessel phantom and ex vivo coronary arteries. Radiology. 240:708–716

    Article  PubMed  Google Scholar 

  23. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  CAS  PubMed  Google Scholar 

  24. Prati F, Arbustini E, Labellarte A et al (2001) Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries. Heart. 85:567–570

    Article  CAS  PubMed  Google Scholar 

  25. Nair A, Kuban BD, Tuzcu EM et al (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 34:2200–2206

    Article  Google Scholar 

  26. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  27. Barret JF, Keat N (2004) Artifact in CT: recognition and avoidance. RadioGraphics. 24:1262–1691

    Article  Google Scholar 

  28. Schroeder S, Flohr T, Kopp AF et al (2001) Accuracy of density measurements within plaques located in artificial coronary arteries by X-ray multislice CT: results of a phantom study. J Comput Assist Tomogr 25:900–906

    Article  CAS  PubMed  Google Scholar 

  29. Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intra coronary attenuation on coronary plaque measurements using multislice computed tomography observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431

    Article  PubMed  Google Scholar 

  30. Hyafil F, Cornily JC, Feig JE et al (2007) Non-invasive detection of macrophage using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636–641

    Article  CAS  PubMed  Google Scholar 

  31. Johnson TR, Nikolaou K, Wintersperger BJ et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16:1409–1415

    Article  PubMed  Google Scholar 

  32. Reimann AJ, Rinck D, Birinci-Aydogan A et al (2007) Dual-source computed tomography: advances of improved temporal resolution in coronary plaque imaging. Invest Radiol 42:196–203

    Article  PubMed  Google Scholar 

  33. Rioufol G, Elbaz M, Dubreuil O et al (2006) Adventitia measurement in coronary artery: an in vivo intravascular ultrasound study. Heart. 92:985–986

    Article  CAS  PubMed  Google Scholar 

  34. Otsuka M, Bruining N, Van Pelt NC et al (2008) Quantification of coronary plaque by 64-slice computed tomography: a comparison with quantitative intracoronary ultrasound. Invest Radiol 43:314–321

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

No conflict of interest exists regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Finet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopard, R., Boussel, L., Motreff, P. et al. How reliable are 40 MHz IVUS and 64-slice MDCT in characterizing coronary plaque composition? An ex vivo study with histopathological comparison. Int J Cardiovasc Imaging 26, 373–383 (2010). https://doi.org/10.1007/s10554-009-9562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9562-y

Keywords

Navigation