Skip to main content
Log in

Prevalence of non-cardiac findings in a large series of patients undergoing cardiac multi-detector computed tomography scans

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The purpose of our study was to determine the prevalence of non-cardiac findings in a large series of patients undergoing contrast-enhanced cardiac multi-detector computed tomography (MDCT) scans. Non-cardiac findings were classified according to the organ of involvement and level of significance. We retrospectively reviewed scans and reports of 1,061 patients performed between 1 April 2004 and 31 April 2006. Non-cardiac findings were considered significant if they warranted further radiological or clinical follow-up. A total of 103 non-cardiac findings were reported in 85 (8.0%) of the 1,061 patients. Of these lesions, 48 (46.7%) were significant and 55 (53.3%) were not. The significant lesions were found in 33 of the 1,061 patients (3.1%). Among the significant abnormalities, the three most common were pulmonary nodules (16.7%), emphysema (16.7%) and possible hepatic carcinomas (12.6%). Patients with non-cardiac findings were significantly older than those without (mean age 60 ± 6 years vs. 55 ± 8 years; P < 0.0001). The prevalence of active smoking was significantly higher in patients with non-cardiac findings (28.2 vs. 17.8%; P = 0.03). The prevalence of non-cardiac abnormalities detected by cardiac MDCT was 8% and about half of these findings were deemed significant. These lesions commonly occurred in the lungs and the liver. Age and active smoking were predictive of the presence of non-cardiac abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  2. Baumgart D, Schmermund A, George G et al (1997) Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for the detection of coronary atherosclerosis. J Am Coll Cardiol 30:57–64. doi:10.1016/S0735-1097(97)00147-2

    Article  PubMed  CAS  Google Scholar 

  3. Becker CR, Jakobs TF, Aydemir S et al (2000) Helical and single slice conventional CT versus electron beam CT for the quantification of coronary artery calcification. AJR Am J Roentgenol 174:543–547

    PubMed  CAS  Google Scholar 

  4. Becker CR, Kleffel T, Crispin A et al (2001) Coronary artery calcium measurement: agreement between multirow detector and electron beam CT. AJR Am J Roentgenol 176:1295–1298

    PubMed  CAS  Google Scholar 

  5. Haberl R, Becker A, Leber A et al (2001) Correlation of coronary calcification and angiographically documented stenosis in patients with suspected coronary artery disease: results on 1, 764 patients. J Am Coll Cardiol 37:451–457. doi:10.1016/S0735-1097(00)01119-0

    Article  PubMed  CAS  Google Scholar 

  6. Raggi P, Callister TQ, Cooil B et al (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron beam computed tomography. Circulation 101:850–855

    PubMed  CAS  Google Scholar 

  7. Arad Y, Spadaro LA, Goodman K et al (2000) Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 36:1253–1260. doi:10.1016/S0735-1097(00)00872-X

    Article  PubMed  CAS  Google Scholar 

  8. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666. doi:10.1161/01.CIR.0000055738.31551.A9

    Article  PubMed  Google Scholar 

  9. Hoffmann U, Moselewski F, Cury RC et al (2004) Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient- versus segment-based analysis. Circulation 110:2638–2643. doi:10.1161/01.CIR.0000145614.07427.9F

    Article  PubMed  Google Scholar 

  10. Achenbach S, Ropers D, Pohle FK et al (2005) Detection of coronary artery stenoses using multi-detector CT with 16 × 0.75 collimation and 375 ms rotation. Eur Heart J 26:1978–1986. doi:10.1093/eurheartj/ehi326

    Article  PubMed  Google Scholar 

  11. Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487. doi:10.1093/eurheartj/ehi261

    Article  PubMed  Google Scholar 

  12. Raff GL, Gallagher MJ, O′Neill WW et al (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557. doi:10.1016/j.jacc.2005.05.056

    Article  PubMed  Google Scholar 

  13. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment based comparison with intravascular ultrasound. Circulation 109:14–17. doi:10.1161/01.CIR.0000111517.69230.0F

    Article  PubMed  Google Scholar 

  14. Lessick J, Mutlak D, Rispler S et al (2005) Comparison of multidetector computed tomography versus echocardiography for assessing regional left ventricular function. Am J Cardiol 96:1011–1015. doi:10.1016/j.amjcard.2005.05.062

    Article  PubMed  Google Scholar 

  15. Raman SV, Cook SC, McCarthy B et al (2005) Usefulness of multidetector row computed tomography to quantify right ventricular size and function in adults with either tetralogy of Fallot or transposition of the great arteries. Am J Cardiol 95:683–686. doi:10.1016/j.amjcard.2004.11.014

    Article  PubMed  Google Scholar 

  16. Horton KM, Post WS, Blumenthal RS et al (2002) Prevalence of significant noncardiac findings on electron-beam computed tomography coronary artery calcium screening examinations. Circulation 106:532–534. doi:10.1161/01.CIR.0000027136.56615.DE

    Article  PubMed  Google Scholar 

  17. Elgin EE, O′Malley PG, Feuerstein I et al (2002) Frequency and severity of “incidentalomas” encountered during electron beam computed tomography for coronary calcium in middle-aged army personnel. Am J Cardiol 90:543–545. doi:10.1016/S0002-9149(02)02533-X

    Article  PubMed  Google Scholar 

  18. Schragin JG, Weissfeld JL, Edmundowicz D et al (2004) Non-cardiac findings on coronary electron beam computed tomography scanning. J Thorac Imaging 19:82–86. doi:10.1097/00005382-200404000-00004

    Article  PubMed  Google Scholar 

  19. Hunold P, Schmermund A, Seibel RM et al (2001) Prevalence and clinical significance of accidental findings in electron beam tomographic scans for coronary artery calcification. Eur Heart J 22:1748–1758. doi:10.1053/euhj.2000.2586

    Article  PubMed  CAS  Google Scholar 

  20. Onuma Y, Tanabe K, Nakazawa G et al (2006) Noncardiac findings in cardiac imaging with multidetector computed tomography. J Am Coll Cardiol 48:402–406. doi:10.1016/j.jacc.2006.04.071

    Article  PubMed  Google Scholar 

  21. Schietinger BJ, Bozlar U, Hagspiel KD et al (2008) The prevalence of extracardiac findings by multidetector computed tomography before atrial fibrillation ablation. Am Heart J 155:254–259. doi:10.1016/j.ahj.2007.10.008

    Article  PubMed  Google Scholar 

  22. Bachar NG, Kornowski R, Gaspar T et al (2007) Prevalence of significant noncardiac findings on coronary multidetector computed tomography angiography in asymptomatic patients. J Comput Assist Tomogr 31:1–4. doi:10.1097/01.rct.0000233125.83184.33

    Article  Google Scholar 

  23. Haller S, Kaiser C, Buser P et al (2006) Coronary artery imaging with contrast-enhanced MDCT: extracardiac findings. AJR Am J Roentgenol 187:105–110. doi:10.2214/AJR.04.1988

    Article  PubMed  Google Scholar 

  24. Mueller J, Jeudy J, Poston R et al (2007) Cardiac CT angiography after coronary bypass surgery:prevalence of incidental findings. AJR Am J Roentgenol 189:414–419. doi:10.2214/AJR.06.0736

    Article  PubMed  Google Scholar 

  25. Law YM, Huang J, Chen K, Cheah FK, Chua T (2008) Prevalence of significant extracoronary findings on multislice CT coronary angiography examinations and coronary artery calcium scoring examinations. J Med Imaging Radiat Oncol 52:49–56. doi:10.1111/j.1440-1673.2007.01911.x

    Article  PubMed  CAS  Google Scholar 

  26. Maynard JE (1990) Hepatitis B: global importance and need for control. Vaccine 8(suppl):S18. doi:10.1016/0264-410X(90)90209-5

    Article  PubMed  Google Scholar 

  27. Alter MJ, Hadler SC, Margolis HS et al (1990) The changing epidemiology of hepatitis B in the United States. Need for alternative vaccination strategies. JAMA 263:1218. doi:10.1001/jama.263.9.1218

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pow-Li Chia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chia, PL., Kaw, G., Wansaicheong, G. et al. Prevalence of non-cardiac findings in a large series of patients undergoing cardiac multi-detector computed tomography scans. Int J Cardiovasc Imaging 25, 537–543 (2009). https://doi.org/10.1007/s10554-009-9455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9455-0

Keywords

Navigation