Skip to main content

Advertisement

Log in

Gated myocardial perfusion SPECT asynchrony measurements in patients with left bundle branch block

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose This investigation sought to determine which newly available asynchrony parameter derived from gated myocardial perfusion SPECT (GMPS) systolic wall thickening data best distinguishes patients with left bundle branch block (LBBB) from normal subjects. Methods and materials Emory Cardiac Toolbox (ECTb) algorithms were used to compute left ventricular (LV) global and regional function and perfusion indices with regional contraction phases for 20 patients with LBBB, and in 9 control (CTL) subjects who had no function or perfusion abnormalities. Histogram plots of phase frequencies versus R–R interval times included phase standard deviation (SD), bandwidth (BW), skewness and kurtosis. Z-score asynchrony measures were derived for phases sampled using the conventional 17-segment model. Results In CTLs contraction occurred nearly simultaneously in all segments, while LBBBs exhibited a wide variety of heterogeneous contraction patterns. Global parameters that differed between LBBBs versus CTLs included EF, end-systolic volume and end-diastolic volume, and asynchrony measures that were different included BW, phase SD and z-scores. Z-scores most strongly discriminated LBBBs from CTLs (93% of cases correctly predicted, logistic regression χ2 = 29.7, P < 0.0001). Z-scores, phase SD and lateral–septal wall timing were highly reproducible (r = 0.99, 0.99 and r = 0.87, respectively), with no significant inter-observer differences. Conclusion While traditional global function parameters were different in LBBBs and CTLs, asynchrony parameters characterized LBBB most strongly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BW:

Bandwidth

CABG:

Coronary artery bypass graft

CAD:

Coronary artery disease

CTL:

Control subject

CHF:

Congestive heart failure

CRT:

Cardiac resynchronization therapy

EDV:

End-diastolic volume

ESV:

End-systolic volume

EF:

Ejection fraction

GMPS:

Gated myocardial perfusion SPECT

LBBB:

Left bundle branch block

LV:

Left ventricular

MI:

Myocardial infarction

ms:

Millisecond

SSS:

Summed stress score

SWT:

Systolic wall thickening

References

  1. Jeong JH, Kim JH, Park YH et al (2004) Incidence of and risk factors for bundle branch block in adults older than 40 years. Korean J Intern Med 19:171–178

    PubMed  Google Scholar 

  2. Cleland JG, Daubert JC, Erdmann E et al (2005) Cardiac Resynchronization-Heart Failure (CARE-HF) study investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549. doi:10.1056/NEJMoa050496

    Article  PubMed  CAS  Google Scholar 

  3. Gregoratos G, Abrams J, Epstein AE et al (2002) ACC/AHA/NASPE (2002) guideline update for implantation of cardiac pacemakers and antiarrhythmia devices a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee on Pacemaker Implantation). Circulation 106:2145–2161. doi:10.1161/01.CIR.0000035996.46455.09

    Article  PubMed  Google Scholar 

  4. Leclercq C, Kass DA (2002) Retiming the failing heart: principles and current clinical status of cardiac resynchronization. J Am Coll Cardiol 39:194–201. doi:10.1016/S0735-1097(01)01747-8

    Article  PubMed  Google Scholar 

  5. Yu CM, Chau E, Sanderson JE et al (2002) Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 105:438–445. doi:10.1161/hc0402.102623

    Article  PubMed  Google Scholar 

  6. Candell-Riera J, Oller-Martínez G, Pereztol-Valdes O et al (2003) Usefulness of myocardial perfusion SPECT in patients with left bundle branch block and previous myocardial infarction. Heart 89:1039–1042. doi:10.1136/heart.89.9.1039

    Article  PubMed  CAS  Google Scholar 

  7. Tsurugaya H, Tada H, Toyama T et al (2004) Usefulness of quantitative gated single-photon emission computed tomography to evaluate ventricular synchrony in patients receiving biventricular pacing. Am J Cardiol 94:127–130. doi:10.1016/j.amjcard.2004.03.044

    Article  PubMed  Google Scholar 

  8. Chen J, Garcia EV, Folks RD et al (2005) Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dysynchrony. J Nucl Cardiol 12:687–695. doi:10.1016/j.nuclcard.2005.06.088

    Article  PubMed  Google Scholar 

  9. Trimble MA, Borges-Neto S, Smallheiser S et al (2007) Evaluation of left ventricular mechanical dyssynchrony as determined by phase analysis of ECG-gated SPECT myocardial perfusion imaging in patients with left ventricular dysfunction and conduction disturbances. J Nucl Cardiol 14(3):298–307. doi:10.1016/j.nuclcard.2007.01.041

    Article  PubMed  Google Scholar 

  10. Faber TL, Cooke CD, Folks RD et al (1999) Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 40:650–659

    PubMed  CAS  Google Scholar 

  11. Hachamovitch R, Berman DS, Kiat H et al (1996) Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 93:905–914

    PubMed  CAS  Google Scholar 

  12. Galt JR, Garcia EV, Robbins WL (1990) Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging 9:144–150. doi:10.1109/42.56338

    Article  PubMed  CAS  Google Scholar 

  13. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging 18:539–542

    PubMed  Google Scholar 

  14. Vilain D, Daou D, Casset-Senon D, Faraggi M, Le Guludec D (2001) Optimal 3-dimensional method for right and left ventricular Fourier phase analysis in electrocardiography-gated blood-pool SPECT. J Nucl Cardiol 8:371–378. doi:10.1067/mnc.2001.114151

    Article  PubMed  CAS  Google Scholar 

  15. Trimble MA, Velazquez EJ, Adams GL et al (2008) Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 29(4):374–381

    Article  PubMed  Google Scholar 

  16. Nichols KJ, Van Tosh A, De Bondt P et al (2008) Normal limits of gated blood pool SPECT count-based regional cardiac function parameters. Int J Cardiovasc Imaging. http://www.springerlink.com/content/1569–5794

  17. Nichols K, Santana CA, Folks R et al (2002) Comparison between “ECTb” and “QGS” for assessment of left ventricular function from gated myocardial perfusion SPECT. J Nucl Cardiol 9:285–293. doi:10.1067/mnc.2002.121449

    Article  PubMed  Google Scholar 

  18. Yu CM, Chan YS, Zhang Q et al (2006) Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography. J Am Coll Cardiol 48(11):2251–2257. doi:10.1016/j.jacc.2006.07.054

    Article  PubMed  Google Scholar 

  19. Yu CM, Fung JW, Zhang Q et al (2004) Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 110(1):66–73. doi:10.1161/01.CIR.0000133276.45198.A5

    Article  PubMed  Google Scholar 

  20. Johnson LL, Verdesca SA, Aude WY et al (1997) Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol 30(7):1641–1648. doi:10.1016/S0735-1097(97)00388-4

    Article  PubMed  CAS  Google Scholar 

  21. Alonso C, Leclercq C, Victor F et al (1999) Electrocardiographic predictive factors of long-term clinical improvement with multisite biventricular pacing in advanced heart failure. Am J Cardiol 84:1417–1421. doi:10.1016/S0002-9149(99)00588-3

    Article  PubMed  CAS  Google Scholar 

  22. Henneman MM, Chen J, Dibbets-Schneider P et al (2007) Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 48:1104–1111. doi:10.2967/jnumed.107.039925

    Article  PubMed  Google Scholar 

  23. Chen J, Henneman MM, Trimble MA et al (2008) Assessment of left ventricular mechanical dyssynchrony by phase analysis of ECG-gated SPECT myocardial perfusion imaging. J Nucl Cardiol 15:127–136. doi:10.1016/j.nuclcard.2007.11.004

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Jing Han for her expert assistance with the statistical analysis reported for this project. This work was supported by a grant from the Saint Francis Research Foundation. Some of the authors (Chen, Garcia) receive royalties from the sale of Phase Analysis tool with the Emory Cardiac Toolbox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth J. Nichols.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, K.J., Van Tosh, A., Siddiqi, S. et al. Gated myocardial perfusion SPECT asynchrony measurements in patients with left bundle branch block. Int J Cardiovasc Imaging 25, 43–51 (2009). https://doi.org/10.1007/s10554-008-9354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9354-9

Keywords

Navigation