Skip to main content
Log in

Strain and strain rate deformation parameters: from tissue Doppler to 2D speckle tracking

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Strain and strain rate deformation parameters based on Color Doppler Myocardial Imaging, and more recently on two-dimensional (2D) gray scale images, have evolved as important methods for the quantification of myocardial function. Although these parameters are already applicable in the research field, their acquisition and analysis involve a number of technical challenges and complexities. Accurate knowledge of the basic principles of those techniques, as presented in this article, will further enhance their applicability to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

2D:

2 Dimensional

S:

Strain

SR:

Strain Rate

References

  1. Parisi AF, Moynihan PF, Folland ED, Feldman CL (1981) Quantitative detection of regional left ventricular contraction abnormalities by two-dimensional echocardiography, II: accuracy in coronary artery disease. Circulation 63:761–767

    PubMed  CAS  Google Scholar 

  2. Visser CA, Kan G, Lie KI, Becker AE, Durrer D (1982) Apex two-dimensional echocardiography: alternative approach to quantification of acute myocardial infarction. Br Heart J 47:461–467

    Article  PubMed  CAS  Google Scholar 

  3. Doppler CA (1843) Über das farbige licht der Doppelsterne und einiger anderer Gestirne des Himmels. Abhandlungen der königl. böhm. Gesellschaft der Wissenschaften 2:465–482

    Google Scholar 

  4. Isaaz K, Thompson A, Ethevenot G, Cloez JL, Brembilla B, Pernot C (1989) Doppler echocardiographic measurement of low velocity motion of the left ventricular posterior wall. Am J Cardiol 64:66–75

    Article  PubMed  CAS  Google Scholar 

  5. Mc Dicken WM, Sutherland GR, Moran CM, Gordon LN (1992) Colour Doppler velocity imaging of the myocardium. Ultrasound Med Biol 18:651–654

    Article  CAS  Google Scholar 

  6. Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, Riemersma RA, Fenn LN, Fox KA, McDicken (1994) Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr 7:441–458

    PubMed  CAS  Google Scholar 

  7. Fleming AD, Xia X, McDicken WN, Sutherland GR, Fenn L (1994) Myocardial velocity gradients detected by Doppler imaging. Br J Radiol 67:679–688

    PubMed  CAS  Google Scholar 

  8. Heimdal A, Torp H, Stoylen A, Urdalen T, Lund AV (1997) Real-time strain velocity imaging (SVI). IEEE Ultrasonic Sympos Proc 2:1423–1426

    Google Scholar 

  9. Meunier J, Bertrand M, Mailloux G, Petitclerc R (1988) Local myocardial deformation computed from speckle motion. Comp Cardiol 133–136

  10. Kasai C, Namekawa K, Koyano A, Omoto R (1985) Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans Sonics Ultrason 32:458–464

    Google Scholar 

  11. Hangiandreou NJ (2003) B-mode US. Basic concepts and new technology. RadioGraphics 23:1019–1033

  12. Jensen JA (1996) Estimation of blood velocities using ultrasound. University Press, Cambridge

    Google Scholar 

  13. Zagzebski JA (1996) Essentials of ultrasound physics. Doppler Implement 5:90–91

    Google Scholar 

  14. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA (2000) Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation 102:1158–1164

    PubMed  CAS  Google Scholar 

  15. Mirsky I, Ghista D, Sandler H (1974) Cardiac mechanics: physiological, clinical and mathematical considerations. John &Sons Inc., New York

    Google Scholar 

  16. D’Hooge J, Jamal F, Bijnens B, Heimdal A, Thoen J, Van de Werf F, Sutherland GR, Suetens P (2000) Calculation of strain values from strain rate curves: how should this be done? IEEE Ultrasonics Symposium 1269–1272

  17. Fleming AD, Xia X, McDicken WN, Sutherland GR, Fenn L (1994) Myocardial velocity gradients detected by Doppler imaging. Br J Radiol 67:679–688

    Article  PubMed  CAS  Google Scholar 

  18. Tsutsui H, Uematsu M, Shimizu H, Yamagishi M, Tanaka N, Matsuda H, Miyatake K (1998) Comparative usefulness of myocardial velocity gradient in detecting ischemic myocardium by a dobutamine challenge. J Am Coll Cardiol 31:89–93

    Article  PubMed  CAS  Google Scholar 

  19. Armstrong G, Pasquet A, Fukamachi K, Cardon L, Olstad B, Marwick T (2000) Use of peak systolic strain as an index of regional left ventricular function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia. J Am Soc Echocardiogr 13:731–737

    Article  PubMed  CAS  Google Scholar 

  20. Greenberg NL, Firstenberg MS, Castro PL, Main M, Travaglini A, Odabashian JA, Drinko JK, Rodriguez LL, Thomas JD, Garcia MJ (2002) Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation 105:99–105

    Article  PubMed  Google Scholar 

  21. Abraham TP, Nishimura RA, Holmes DR Jr, Belohlavek M, Seward JB (2002) Strain rate imaging for assessment of regional myocardial function: results from a clinical model of septal ablation. Circulation 105:1403–1406

    Article  PubMed  Google Scholar 

  22. Voigt JU, Nixdorff U, Bogdan R, Exner B, Schmiedehausen K, Platsch G, Kuwert T, Daniel WG, Flachskampf FA (2004) Comparison of deformation imaging and velocity imaging for detecting regional inducible ischaemia during dobutamine stress echocardiography. Eur Heart J 25:1517–1525

    Article  PubMed  Google Scholar 

  23. D’hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1:154–170

    Article  PubMed  CAS  Google Scholar 

  24. Heimdal A, D’hooge J, Bijnens B, Sutherland GR, Torp H (1998) In vitro validation of in-plane strain rate imaging. A new ultrasound technique for evaluating regional myocardial deformation based on tissue Doppler imaging. Echocardiography 15:40

    Google Scholar 

  25. Belohlavek M, Bartleson VB, Zobitz ME (2001) Real-time strain rate imaging: validation of peak compression and expansion rates by a tissue-mimicking phantom. Echocardiography 18:565–571

    Article  PubMed  CAS  Google Scholar 

  26. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA (2000) Myocardial strain by Doppler echocardiography: validation of a new method to quantify regional myocardial function. Circulation 102:1158–1164

    PubMed  CAS  Google Scholar 

  27. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106:50–56

    Article  PubMed  Google Scholar 

  28. Weidemann F, Jamal F, Kowalski M, Kukulski T, D’Hooge J, Bijnens B, Hatle L, De Scheerder I, Sutherland GR (2002) Can strain rate and strain quantify changes in regional systolic function during dobutamine infusion, b-blockade, and atrial pacing? Implications for quantitative stress echocardiography. J Am Soc Echocardiogr 15:416–424

    Article  PubMed  Google Scholar 

  29. Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, De Scheerder I, Bijnens B, Rademakers FE (2002) Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol 283:792–799

    Google Scholar 

  30. Greenberg NL, Firstenberg MS, Castro PL, Main M, Travaglini A, Odabashian JA, Drinko JK, Rodriguez LL, Thomas JD, Garcia MJ (2002) Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility. Circulation 105:99–105

    Article  PubMed  Google Scholar 

  31. Jamal F, Strotmann J, Weidemann F, Kukulski T, D’hooge J, Bijnens B, Van de Werf F, De Scheerder I, Sutherland GR (2001) Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain. Circulation 104:1059–1065

    Article  PubMed  CAS  Google Scholar 

  32. Hoskins P, Thrush A, Martin K, Whittingam T (2003) Diagnostic ultrasound: physics and equipment. Colour Flow Imaging 129–147

  33. Shattuck D, Weinshenker M, Smith S, von Ramm O (1984) Explososcan. A parallel processing technique for high speed ultrasound imaging with linear phased arrays. J Acoust Soc Am 75:1273–1282

    Article  PubMed  CAS  Google Scholar 

  34. Lizelle Hanekom, Vidar Lundberg, Rodel Leano, Thomas H Marwick (2004) Optimization of strain rate imaging for application to stress echocardiography. Ultrasound Med Biol 30:1451–1460

    Article  Google Scholar 

  35. Heimdal A, D’hooge J, Bijnens B, Sutherland GR, Torp H (1998) Effect of stationary reverberations and clutter filtering in strain rate imaging. IEEE Ultrasonics Sympos 1361–1364

  36. Santos A, Ledesma-Carbayo MJ, Malpica N, Desco M, Antoranz JC, Marcos-Alberca P, Garcia-Fernandez MA (2001) Accuracy of heart strain rate calculation derived from Doppler tissue velocity data. Medical Imaging, Ultrasonic Imaging Signal Process, Proc SPIE 4325:546–556

    Google Scholar 

  37. Horn B, Schunk B (1981) Determining the optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  38. Bohs LN, Trahey GE (1991) A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans Biomed Eng 38:280–286

    Article  PubMed  CAS  Google Scholar 

  39. Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ, Rosen BD, Lima JA, Torp H, Ihlen H, Smiseth OA (2005) New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation 15:3149–3156

    Article  Google Scholar 

  40. Abraham TP, Nishimura RA (2001) Myocardial strain: can we finally measure contractility? J Am Coll Cardiol 37:731–734

    Article  PubMed  CAS  Google Scholar 

  41. Strotmann JM, Hatle L, Sutherland GR (2001) Doppler myocardial imaging in the assessment of normal and ischemic myocardial function–past, present and future. Int J Cardiovasc Imaging 17:89–98

    Article  PubMed  CAS  Google Scholar 

  42. Kukulski T, Jamal F, Herbots L, D’hooge J, Bijnens B, Hatle L, De Scheerder I, Sutherland GR (2003) Identification of acutely ischemic myocardium using ultrasonic strain measurements a clinical study in patients undergoing coronary angioplasty. J Am Coll Cardiol 41:810–819

    Article  PubMed  Google Scholar 

  43. Edvardsen T, Skulstad H, Aakhus S, Urheim S, Ihlen H (2001) Regional myocardial systolic function during acute myocardial ischemia assessed by strain doppler echocardiography .J Am Coll Cardiol 37:726–730

    Article  PubMed  CAS  Google Scholar 

  44. Serri K, Reant P, Lafitte M, Berhouet M, Le Bouffos V, Roudaut R, Lafitte S (2006) Global and regional myocardial function quantification by two-dimensional strain application in hypertrophic cardiomyopathy.J Am Coll Cardiol 47:1175–1181

    Article  PubMed  Google Scholar 

  45. Kato TS, Noda A, Izawa H, Yamada A, Obata K, Nagata K, Iwase M, Murohara T, Yokota M (2004) Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue doppler ultrasonography. Circulation 110:3808–3814

    Article  PubMed  Google Scholar 

  46. Palka P, Lange A, Donnelly JE, Nihoyannopoulos P (2000) Differentiation between restrictive cardiomyopathy and constrictive pericarditis by early diastolic Doppler myocardial velocity gradient at the posterior wall. Circulation 102:655–662

    PubMed  CAS  Google Scholar 

  47. Lindqvist P, Olofsson BO, Backman C, Suhr O, Waldenström A (2006) Pulsed tissue Doppler and strain imaging discloses early signs of infiltrative cardiac disease: a study on patients with familial amyloidotic polyneuropathy. Eur J Echocardiogr 7:22–30

    Article  PubMed  CAS  Google Scholar 

  48. Weidemann F, Eyskens B, Mertens L, Dommke C, Kowalski M, Simmons L, Claus P, Bijnens B, Gewillig M, Hatle L, Sutherland GR (2002) Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes after surgical repair of tetralogy of fallot. Am J Cardiol 90:133–138

    Article  PubMed  Google Scholar 

  49. Lee R, Hanekom L, Marwick TH, Leano R, Wahi S (2004) Prediction of subclinical left ventricular dysfunction with strain rate imaging in patients with asymptomatic severe mitral regurgitation Am J Cardiol 94:1333–1337

    Article  PubMed  Google Scholar 

  50. Hanekom L, Jenkins C, Jeffries L, Case C, Mundy J, Hawley C, Marwick TH (2005) Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography a follow-up study after revascularization. Circulation 112:3892–3900

    Article  PubMed  Google Scholar 

  51. Goebel B, Arnold R, Koletzki E, Ulmer HE, Eichhorn J, Borggrefe M, Figulla HR, Poerner TC (2007) Exercise tissue Doppler echocardiography with strain rate imaging in healthy young individuals: feasibility, normal values and reproducibility. Int J Cardiovasc Imaging 23:149–155

    Article  PubMed  Google Scholar 

  52. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J III (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation. 113:960–968

    Article  PubMed  Google Scholar 

  53. Yu CM, Gorcsan J 3rd, Bleeker GB, Zhang Q, Schalij MJ, Suffoletto MS, Fung JW, Schwartzman D, Chan YS, Tanabe M, Bax JJ (2007) Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol 100:1263–1270

    Google Scholar 

  54. Jamal F, Strotmann J, Weidemann F, Kukulski T, D’hooge J, Bijnens B, Werf Van de F, Scheerder De I, Sutherland GR (2001) Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain Circulation 104:1059–1065

    Article  PubMed  CAS  Google Scholar 

  55. Marciniak M, Claus P, Streb W, Marciniak A, Boettler P, McLaughlin M, D’hooge J, Rademakers F, Bijnens B, Sutherland GR (2007) The quantification of dipyridamole induced changes in regional deformation in normal, stunned or infarcted myocardium as measured by strain and strain rate: an experimental study. Int J Cardiovasc Imaging. Oct 2; (Epub ahead of print)

Download references

Acknowledgments

We sincerely thank Prof. Sidney Leeman from the physics department, Imperial College of Medicine, for the critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Pavlopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlopoulos, H., Nihoyannopoulos, P. Strain and strain rate deformation parameters: from tissue Doppler to 2D speckle tracking. Int J Cardiovasc Imaging 24, 479–491 (2008). https://doi.org/10.1007/s10554-007-9286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-007-9286-9

Keywords

Navigation