Skip to main content
Log in

Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Death or myocardial infarction, the most serious clinical consequences of atherosclerosis, often result from plaque rupture at non-flow limiting lesions. Current diagnostic imaging with coronary angiography only detects large plaques that already impinge on the lumen and cannot accurately identify those that have a propensity to cause unheralded events. Accurate evaluation of the composition or of the biomechanical characteristics of plaques with invasive or non-invasive methods, alone or in conjunction with assessment of circulating biomarkers, could help identify high-risk patients, thus providing the rationale for aggressive treatments in order to reduce future clinical events. The IBIS (Integrated Biomarker and Imaging Study) study is a prospective, single-center, non-randomized, observational study conducted in Rotterdam. The aim of the IBIS study is to evaluate both invasive (quantitative coronary angiography, intravascular ultrasound (IVUS) and palpography) and non-invasive (multislice spiral computed tomography) imaging techniques to characterize non-flow limiting coronary lesions. In addition, multiple classical and novel biomarkers will be measured and their levels correlated with the results of the different imaging techniques. A minimum of 85 patients up to a maximum of 120 patients will be included. This paper describes the study protocol and methodological solutions that have been devised for the purpose of comparisons among several imaging modalities. It outlines the analyses that will be performed to compare invasive and non-invasive imaging techniques in conjunction with multiple biomarkers to characterize non-flow limiting subclinical coronary lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EEM:

external elastic membrane

HU:

Hounsfield units

IVUS:

intravascular ultrasound

MSCT:

multislice spiral computed tomography

PCI:

percutaneous coronary intervention

QCU:

Quantitative Coronary Ultrasound

RF:

radio frequency

ROI:

region of interest

STEMI:

ST elevation myocardial infarction

US:

ultrasound

VH:

virtual histology

References

  1. JA Ambrose MA Tannenbaum D Alexopoulos CE Hjemdahl-Monsen J Leavy M Weiss et al. (1988) ArticleTitleAngiographic progression of coronary artery disease and the development of myocardial infarction J Am Coll Cardiol 12 IssueID1 56–62 Occurrence Handle3379219

    PubMed  Google Scholar 

  2. JI Haft BJ Haik JE Goldstein NE Brodyn (1988) ArticleTitleDevelopment of significant coronary artery lesions in areas of minimal disease. A common mechanism for coronary disease progression Chest 94 IssueID4 731–736 Occurrence Handle3168569

    PubMed  Google Scholar 

  3. WC Little M Constantinescu RJ Applegate MA Kutcher MT Burrows FR Kahl et al. (1988) ArticleTitleCan coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78 IssueID5 Pt 1 1157–1166 Occurrence Handle3180375

    PubMed  Google Scholar 

  4. E Falk PK Shah V Fuster (1995) ArticleTitleCoronary plaque disruption Circulation 92 IssueID3 657–671 Occurrence Handle7634481

    PubMed  Google Scholar 

  5. IJ Kullo WD Edwards RS Schwartz (1998) ArticleTitleVulnerable plaque: pathobiology and clinical implications Ann Intern Med 129 IssueID12 1050–1060 Occurrence Handle9867761

    PubMed  Google Scholar 

  6. M Naghavi P Libby E Falk et al. (2003) ArticleTitleFrom vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II Circulation 108 IssueID15 1772–1778 Occurrence Handle14557340

    PubMed  Google Scholar 

  7. M Naghavi P Libby E Falk SW Casscells S Litovsky J Rumberger et al. (2003) ArticleTitleFrom vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I Circulation 108 IssueID14 1664–1672 Occurrence Handle14530185

    PubMed  Google Scholar 

  8. JA Schaar JE Muller E Falk et al. (2004) ArticleTitleTerminology for high-risk and vulnerable coronary arterty plaques Eur Heart J 25 IssueID12 1077–1082 Occurrence Handle15191780

    PubMed  Google Scholar 

  9. R Virmani FD Kolodgie AP Burke A Farb SM Schwartz (2000) ArticleTitleLessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions Arterioscler Thromb Vasc Biol 20 IssueID5 1262–1275 Occurrence Handle10807742

    PubMed  Google Scholar 

  10. R Ross (1999) ArticleTitleAtherosclerosis is an inflammatory disease Am Heart J 138 IssueID5 Pt 2 S419–S420 Occurrence Handle10539839

    PubMed  Google Scholar 

  11. FD Kolodgie AP Burke A Farb et al. (200l) ArticleTitleThe thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes Curr Opin Cardiol 16 IssueID5 285–292

    Google Scholar 

  12. P Libby (2002) ArticleTitleInflammation in atherosclerosis Nature 420 IssueID6917 868–874 Occurrence Handle12490960

    PubMed  Google Scholar 

  13. P Libby PM Ridker A Maseri (2002) ArticleTitleInflammation and atherosclerosis Circulation 105 IssueID9 1135–2243 Occurrence Handle11877368

    PubMed  Google Scholar 

  14. MJ Davies (1996) ArticleTitleStability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995 Circulation 94 IssueID8 2013–2020 Occurrence Handle8873680

    PubMed  Google Scholar 

  15. FD Kolodgie HK Gold AP Burke et al. (2003) ArticleTitleIntraplaque hemorrhage and progression of coronary atheroma N Engl J Med 349 IssueID24 2316–2325 Occurrence Handle14668457

    PubMed  Google Scholar 

  16. S Glagov E Weisenberg CK Zarins R Stankunavicius GJ Kolettis (1987) ArticleTitleCompensatory enlargement of human atherosclerotic coronary arteries N Engl J Med 316 IssueID22 1371–1375 Occurrence Handle3574413

    PubMed  Google Scholar 

  17. P Schoenhagen KM Ziada DG Vince SE Nislen EM Tuzcu (2001) ArticleTitleArterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis J Am Coll Cardiol 38 IssueID2 297–306 Occurrence Handle11499716

    PubMed  Google Scholar 

  18. SE Nissen P Yock (2001) ArticleTitleIntravascular ultrasound: novel pathophysiological insights and current clinical applications Circulation 103 IssueID4 604–616 Occurrence Handle11157729

    PubMed  Google Scholar 

  19. CL Korte Particlede G Pasterkamp AF Steen Particlevan der HA Woutman N Born (2000) ArticleTitleCharacterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro Circulation 102 IssueID6 617–623 Occurrence Handle10931800

    PubMed  Google Scholar 

  20. PJ Feyter Particlede K Nieman P Ooijen Particlevan M Oudkerk (2000) ArticleTitleNon-invasive coronary artery imaging with electron beam computed tomography and magnetic resonance imaging Heart 84 IssueID4 442–448 Occurrence Handle10995423

    PubMed  Google Scholar 

  21. R Ross (1999) ArticleTitleAtherosclerosis – an inflammatory disease N Engl J Med 340 IssueID2 115–126 Occurrence Handle9887164

    PubMed  Google Scholar 

  22. TA Pearson GA Mensah RW Alexander JL Anderson RO Cannon SuffixIII M Criqui et al. (2003) ArticleTitleMarkers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association Circulation 107 IssueID3 499–511 Occurrence Handle12551878

    PubMed  Google Scholar 

  23. PM Ridker N Rifai L Rose JE Buring NR Cook (2002) ArticleTitleComparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events N Engl J Med 347 IssueID20 1557–1565 Occurrence Handle12432042

    PubMed  Google Scholar 

  24. PM Ridker (2003) ArticleTitleClinical application of C-reactive protein for cardiovascular disease detection and prevention Circulation 107 IssueID3 363–369 Occurrence Handle12551853

    PubMed  Google Scholar 

  25. PM Ridker CH Hennekens B Roitman-Johnson MJ Stampfer J Allen (1998) ArticleTitlePlasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men Lancet 351 IssueID(9096 88–92 Occurrence Handle9439492

    PubMed  Google Scholar 

  26. LM Biasucci A Vitelli G Liuzzo et al. (1996) ArticleTitleElevated levels of interleukin-6 in unstable angina Circulation 94 IssueID5 874–877 Occurrence Handle8790019

    PubMed  Google Scholar 

  27. M Cesari BW Penninx AB Newman et al. (2003) ArticleTitleInflammatory markers and onset of cardiovascular events: results from the Health ABC study Circulation 108 IssueID19 2317–2322 Occurrence Handle14568895

    PubMed  Google Scholar 

  28. A Bayes-Genis CA Conover MT Overgaard et al. (2001) ArticleTitlePregnancy-associated plasma protein A as a marker of acute coronary syndromes N Engl J Med 345 IssueID14 1022–1029 Occurrence Handle11586954

    PubMed  Google Scholar 

  29. PJ Feyter Particlede PW Serruys MJ Davies P Richardson J Lubsen MF Oliver (1991) ArticleTitleQuantitative coronary angiography to measure progression and regression of coronary atherosclerosis.Value, limitations, and implications for clinical trials Circulation 84 IssueID1 412–423 Occurrence Handle2060112

    PubMed  Google Scholar 

  30. JHC Reiber PM Zwet ParticleVan Der et al. (1994) Accuracy and precision of quantitative digital coronary arteriography; observer-, as well as short- and medium-term variabilities PW Serruys DP Foley PJ Feyter Particlede (Eds) Quantitative coronary angiography in clinical practice Kluwer Academic Publishers Dordrecht 7–26

    Google Scholar 

  31. R Hamers N Bruining M Knook M Sabate JRTC Roelandt (2001) ArticleTitleA novel approach to quantitative analysis of Intravascular Ultrasound Images Computers Cardiol 28 589–592

    Google Scholar 

  32. N Bruining C Birgelen Particlevon PJ Feyter Particlede et al. (1998) ArticleTitleECG-gated versus nongated three-dimensional intracoronary ultrasound analysis: implications for volumetric measurements Cathet Cardiovasc Diagn 43 IssueID3 254–260 Occurrence Handle9535359

    PubMed  Google Scholar 

  33. SA Winter ParticleDe R Hamers M Degertekin et al. (2004) ArticleTitleRetrospective image-based gating of intracoronary ultrasound images for improved quantitative analysis: the intelligate method Catheter Cardiovasc Interv 61 IssueID1 84–94 Occurrence Handle14696165

    PubMed  Google Scholar 

  34. C Birgelen Particlevon EA Vrey Particlede GS Mintz et al. (1997) ArticleTitleECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humans Circulation 96 IssueID9 2944–2952 Occurrence Handle9386161

    PubMed  Google Scholar 

  35. N Bruining R Hamers TJ Teo PJ Feijter Particlede PW Serruys JR Roelandt (2004) ArticleTitleAdjustment method for mechanical Boston scientific corporation 30 MHz intravascular ultrasound catheters connected to a Clearview console. Mechanical 30 MHz IVUS catheter adjustment Int J Cardiovasc Imaging 20 IssueID2 83–91 Occurrence Handle15068137

    PubMed  Google Scholar 

  36. RA Nishimura WD Edwards CA Warnes et al. (1990) ArticleTitleIntravascular ultrasound imaging: in vitro validation and pathologic correlation J Am Coll Cardiol 16 IssueID1 145–154 Occurrence Handle2193046

    PubMed  Google Scholar 

  37. F Prati E Arbustini A Labellarte et al. (2001) ArticleTitleCorrelation between high frequency intravascular ultrasound and histomorphology in human coronary arteries Heart 85 IssueID5 567–570 Occurrence Handle11303012

    PubMed  Google Scholar 

  38. T Okimoto M Imazu Y Hayashi H Fujiwara H Ueda N Kohno (2002) ArticleTitleAtherosclerotic plaque characterization by quantitative analysis using intravascular ultrasound: correlation with histological and immunohistochemical findings Circ J 66 IssueID2 173–177 Occurrence Handle11999643

    PubMed  Google Scholar 

  39. M Schartl W Bocksch DH Koschyk et al. (2001) ArticleTitleUse of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery disease Circulation 104 IssueID4 387–392 Occurrence Handle11468198

    PubMed  Google Scholar 

  40. SA Winter Particlede I Heller R Hamers et al. (2003) ArticleTitleComputer assisted three-dimensional plaque characterization in ultracoronary ultrasound studies Comput Cardiol 30 73–76

    Google Scholar 

  41. CL Korte Particlede MJ Sierevogel F Mastik et al. (2002) ArticleTitleIdentification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study Circulation 105 IssueID14 1627–1630 Occurrence Handle11940537

    PubMed  Google Scholar 

  42. JA Schaar CL Korte Particlede F Mastik et al. (2003) ArticleTitleCharacterizing vulnerable plaque features with intravascular elastography Circulation 108 IssueID21 2636–2641 Occurrence Handle14581406

    PubMed  Google Scholar 

  43. CL Korte Particlede SG Carlier F Mastik et al. (2002) ArticleTitleMorphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo Eur Heart J 23 IssueID5 405–413 Occurrence Handle11846498

    PubMed  Google Scholar 

  44. Schaar JA, Mastik F, Regar E, de Korte CL, van der Steen AFW, Serruys PW. Reproducibility of three-dimensional palpography. Eur Heart J 2003; suppl.: 2203.

  45. S Schroeder AF Kopp A Baumbach et al. (2001) ArticleTitleNoninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography J Am Coll Cardiol 37 IssueID5 1430–1435 Occurrence Handle11300457

    PubMed  Google Scholar 

  46. K Nieman F Cademartiri PA Lemos R Raaijmakers PM Pattynama PJ Feyter Particlede (2002) ArticleTitleReliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography Circulation 106 IssueID16 2051–2054 Occurrence Handle12379572

    PubMed  Google Scholar 

  47. A Nair BD Kuban EM Tuzcu P Schoenhagen SE Nissen DG Vince (2002) ArticleTitleCoronary plaque classification with intravascular ultrasound radiofrequency data analysis Circulation 106 IssueID17 2200–2206 Occurrence Handle12390948

    PubMed  Google Scholar 

  48. MP Moore T Spencer DM Salter et al. (1998) ArticleTitleCharacterization of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation Heart 79 IssueID5 459–467 Occurrence Handle9659192

    PubMed  Google Scholar 

  49. SE Nissen EM Tuzcu P Schoenhagen et al. (2004) ArticleTitleEffect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial JAMA 291 IssueID9 1071–1080 Occurrence Handle14996776

    PubMed  Google Scholar 

  50. JS Alpert K Thygesen E Antman JP Bassand (2000) ArticleTitleMyocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction J Am Coll Cardiol 36 IssueID3 959–969 Occurrence Handle10987628

    PubMed  Google Scholar 

  51. PW Serruys H Emanuelsson W Giessen Particlevan der et al. (1996) ArticleTitleHeparin-coated Palmaz-Schatz stents in human coronary arteries. Early outcome of the Benestent-II Pilot Study Circulation 93 IssueID3 412–422 Occurrence Handle8565157

    PubMed  Google Scholar 

  52. GS Mintz SE Nissen WD Anderson et al. (2001) ArticleTitleAmerican College of Cardiology Clinical Expert Consensus Document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents J Am Coll Cardiol 37 IssueID5 1478–1492 Occurrence Handle11300468

    PubMed  Google Scholar 

  53. MR Ward G Pasterkamp AC Yeung C Borst (2000) ArticleTitleArterial remodeling. Mechanisms and clinical implications Circulation 102 IssueID10 1186–1191 Occurrence Handle10973850

    PubMed  Google Scholar 

  54. C Birgelen Particlevon M Hartmann GS Mintz D Baumgart A Schmermund R Erbel (2003) ArticleTitleRelation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (≥12 months) follow-up intravascular ultrasound Circulation 108 IssueID22 2757–2762 Occurrence Handle14623804

    PubMed  Google Scholar 

  55. C Birgelen Particlevon M Hartmann GS Mintz et al. (2004) ArticleTitleSpectrum of remodeling behavior observed with serial long-term (≥12 months) follow-up intravascular ultrasound studies in left main coronary arteries Am J Cardiol 93 IssueID9 1107–1113 Occurrence Handle15110201

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick W. Serruys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mieghem, C.A.G.V., Bruining, N., Schaar, J.A. et al. Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology. Int J Cardiovasc Imaging 21, 425–441 (2005). https://doi.org/10.1007/s10554-004-7986-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-004-7986-y

Keywords

Navigation