Skip to main content
Log in

Rheological Properties of Polymer Drilling Fluid Developed for Permafrost Natural Gas Hydrate Drilling

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

The rheological properties of water-based drilling fluids are heavily influenced by low temperatures and are some of the most important issues for permafrost natural gas hydrate drilling. In this work, we developed a polymer drilling fluid formula and studied its rheological properties at low temperatures. The rheological properties of four different drilling fluids including macro-polymers, amphoteric polymers, sulfonated polymers, and biopolymers were tested. The corresponding rheological-property/temperature response curves were drawn. The response characteristics of the rheological properties with temperature were analyzed. Based on these, a novel research idea was developed to adapt to permafrost drilling a poly-sulfonate drilling fluid system in which sulfonated lignite (SMC) and sulfonated phenolic resin (SMP) were used as the main agents while xanthan gum (XC) served as a flow-pattern modifier. According to orthogonal test results, the optimized drilling fluid formula was base mud + NaCl (20 wt. %) + NaOH (0.1) + SMP (3) + SMC (4) + XC (0.3). Moreover, the rheological-property/temperature response mechanism was analyzed using Fourier transform infrared (FT-IR) spectroscopic tests of the treating agents and scanning electron microscopic (SEM) tests of the mud cakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Q. Wu, G. Jiang, and P. Zhang, Energy Convers. Manage., 51, No. 4, 783-787 (2010).

    Article  CAS  Google Scholar 

  2. Y. Song, L. Yang, J. Zhao, et al., Renewable Sustainable Energy Rev., 31, 778-791 (2014).

    Article  CAS  Google Scholar 

  3. L. Zhang, G. Jiang, Y. Tu, et al., J. Chin. Univ. Geosci., 17, No. 3, 276-282 (2006).

    Article  CAS  Google Scholar 

  4. G. Jiang, F. Ning, L. Zhang, et al., J. Earth Sci., 22, No. 5, 652-657 (2011).

    Article  CAS  Google Scholar 

  5. L. Chen, S. Wang, and C. Ye, Procedia Eng., 73, 318-325 (2014).

    Article  CAS  Google Scholar 

  6. S. V. Kokelj, D. Riseborough, R. Coutts, et al., Cold Reg. Sci. Technol., 64, No. 1, 46-56 (2010).

    Article  Google Scholar 

  7. M. Amani and M. J. Al-Jubouri, in: International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Sept. 11-13, 2012, Perth, Australia, SPE-157219-MS.

  8. M. Amani and M. Al-Jubouri, Energy Sci. Technol., 4, No. 1, 27-33 (2012).

    CAS  Google Scholar 

  9. S. Wang, L. Chen, and Y. Zhang, Nat. Gas Ind., 29, No. 6, 59-62 (2009).

    Google Scholar 

  10. Z. Lu, Y. Zhu, Y. Zhang, et al., Cold Reg. Sci. Technol., 66, No. 2, 93-104 (2011).

    Article  Google Scholar 

  11. J. M. Davison, S. Clary, and A. Saasen, in: SPE Annual Technical Conference and Exhibition, Oct. 3-6, 1999, Houston, Texas, SPE-56632-MS.

  12. W. Halliday, D. K. Clapper, and M. Smalling, in: IADC/SPE Drilling Conference, Mar. 3-6, 1998, Dallas, Texas, SPE-39316-MS.

  13. H. Ebeltoft, M. Yousif, and E. Soergaard, in: SPE Annual Technical Conference and Exhibition, Oct. 5-8, 1997, San Antonio, Texas, SPE-38567-MS.

  14. J. Romero and E. Touboul, in: SPE Annual Technical Conference and Exhibition, Sept. 27-30, 1998, New Orleans, Louisiana, SPE-49056-MS.

  15. J. Yan, J. Southwest Pet. Inst., 2, 1-15 (1982).

    Google Scholar 

  16. R. L. Davidson, Handbook of Water-soluble Gums and Resins, McGraw-Hill, New York, London, 1980, 700 pp.

    Google Scholar 

  17. S. Rosalam and R. England, Enzyme Microb. Technol., 39, No. 2, 197-207 (2006).

    Article  CAS  Google Scholar 

  18. J. Yan, Drilling Fluid Technology, 1st Ed., China University of Petroleum Press, Shangdong, 2006.

    Google Scholar 

  19. S. Hao, J. Pet. Sci. Eng., 76, No. 3-4, 109-115 (2011).

    Article  CAS  Google Scholar 

  20. S. Faria, C. L. de Oliveira Petkowicz, et al., Carbohydr. Polym., 86, 469-476 (2011).

    Article  CAS  Google Scholar 

  21. V. Gunasekar, K. R. Reshma, T. Greeshma, et al., Carbohydr. Polym., 102, 669-673 (2014).

    Article  CAS  Google Scholar 

  22. N. Saqib, B. S. Tahira, T. Vincent, et al., Fuel Process. Technol., 92, No. 5, 983-991 (2011).

    Article  Google Scholar 

  23. Y. Zhuang, Z. Zhu, H. Chao, et al., J. Appl. Polym. Sci., 55, No. 7, 1063-1067 (1995).

    Article  CAS  Google Scholar 

  24. M. Li, Y. Guo, H. He, et al., J. Chin. Univ. Pet., Ed. Nat. Sci., 34, No. 2, 145-149 (2010).

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grants Nos. 41272331 and 51204027) and the State Key Laboratory of Geo-hazard Prevention and Geo-environment Protection (Grant No. SKLGP2012Z007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Sheng.

Additional information

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 2, pp. 75 – 82, March – April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, W., Chuan, Z., Chaopeng, Y. et al. Rheological Properties of Polymer Drilling Fluid Developed for Permafrost Natural Gas Hydrate Drilling. Chem Technol Fuels Oils 53, 274–285 (2017). https://doi.org/10.1007/s10553-017-0804-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-017-0804-8

Keywords

Navigation