Skip to main content
Log in

Maternal pre-pregnancy and gestational diabetes, obesity, gestational weight gain, and risk of cancer in young children: a population-based study in California

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

We aimed to examine the influence of pre-pregnancy diabetes, pre-pregnancy body mass index (BMI), gestational diabetes, and gestational weight gain on childhood cancer risk in offspring.

Methods

We identified cancer cases (n = 11,149) younger than age 6 years at diagnosis from the California Cancer Registry registered between 1988 and 2013. Controls (n = 270,147) were randomly sampled from California birth records, and frequency matched by year of birth to all childhood cancers during the study period. Exposure and covariate information were extracted from birth records. Unconditional logistic regression models were generated to assess the importance of pre-pregnancy diabetes, pre-pregnancy BMI, gestational diabetes, and gestational weight gain on childhood cancer risk.

Results

We observed increased risks of acute lymphoblastic leukemia and Wilms’ tumor in children of mothers with pre-pregnancy diabetes [odds ratio (OR) 95 % confidence interval (CI) 1.37 (1.11, 1.69); OR (95 % CI) 1.45 (0.97, 2.18), respectively]. When born to mothers who were overweight prior to pregnancy (BMI 25–<30), children were at increased risk of leukemia [OR (95 % CI) 1.27 (1.01, 1.59)]. Insufficient gestational weight gain increased the risk of acute myeloid leukemia [OR (95 % CI) 1.50 (0.92, 2.42)] while excessive gestational weight gain increased the risk of astrocytomas [OR (95 % CI) 1.56 (0.97, 2.50)]. No associations were found between gestational diabetes and childhood cancer risk in offspring.

Conclusions

We estimated elevated risks of several childhood cancers in the offspring of mothers who had diabetes and were overweight prior to pregnancy, as well as mothers who gained insufficient or excessive weight. Since few studies have focused on these factors in relation to childhood cancer, replication of our findings in future studies is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer Stat 66:7–30. doi:10.3322/caac.21332

    Google Scholar 

  2. Ward E, DeSantis C, Robbins A et al (2014) Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64:83–103. doi:10.3322/caac.21219

    Article  PubMed  Google Scholar 

  3. Spector LG, Pankratz N, Marcotte EL (2015) Genetic and nongenetic risk factors for childhood cancer. Pediatr Clin N Am 62:11–25. doi:10.1016/j.pcl.2014.09.013

    Article  Google Scholar 

  4. Caughey RW, Michels KB (2009) Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int J Cancer 124:2658–2670. doi:10.1002/ijc.24225

    Article  CAS  PubMed  Google Scholar 

  5. Hjalgrim LL, Rostgaard K, Hjalgrim H et al (2004) Birth weight and risk for childhood leukemia in Denmark, Sweden, Norway, and Iceland. J Natl Cancer Inst 96:1549–1556. doi:10.1093/jnci/djh287

    Article  PubMed  Google Scholar 

  6. Paltiel O, Tikellis G, Linet M et al (2015) Birthweight and childhood cancer: preliminary findings from the International Childhood Cancer Cohort Consortium (I4C). Paediatr Perinat Epidemiol 29:335–345. doi:10.1111/ppe.12193

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bjørge T, Toft Sørensen H, Grotmol T et al (2013) Fetal growth and childhood cancer: a population-based study fetal growth and childhood cancer: a population- based study. Pediatrics 132:e1265–e1275. doi:10.1542/peds.2013-1317

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Neill KA, Murphy MF, Bunch KJ et al (2015) Infant birthweight and risk of childhood cancer: international population-based case control studies of 40,000 cases. Int J Epidemiol 44:153–168. doi:10.1093/ije/dyu265

    Article  PubMed  Google Scholar 

  9. Badr M, Hassan T, El Tarhony S, Metwally W (2010) Insulin-like growth factor-1 and childhood cancer risk. Oncol Lett 1:1055–1059. doi:10.3892/ol.2010.169

    PubMed  PubMed Central  Google Scholar 

  10. Callan AC, Milne E (2009) Involvement of the IGF system in fetal growth and childhood cancer: an overview of potential mechanisms. Cancer Causes Control 20:1783–1798. doi:10.1007/s10552-009-9378-z

    Article  PubMed  Google Scholar 

  11. Chokkalingam AP, Metayer C, Scelo G et al (2012) Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control 23:1577–1585. doi:10.1007/s10552-012-0035-6

    Article  PubMed  PubMed Central  Google Scholar 

  12. Petridou E, Skalkidou A, Dessypris N et al (2000) Endogenous risk factors for childhood leukemia in relation to the IGF system (Greece). Cancer Causes Control 11:765–771. doi:10.1023/A:1008988819494

    Article  CAS  PubMed  Google Scholar 

  13. Spector LG, Birch J (2012) The epidemiology of hepatoblastoma. Pediatr Blood Cancer 59:776–779. doi:10.1002/pbc.24215

    Article  PubMed  Google Scholar 

  14. O’Neill KA, Bunch KJ, Murphy MFG (2012) Intrauterine growth and childhood leukemia and lymphoma risk. Expert Rev Hematol 5:559–576. doi:10.1586/ehm.12.39

    Article  PubMed  Google Scholar 

  15. Westbom L, Aberg A, Källén B (2002) Childhood malignancy and maternal diabetes or other auto-immune disease during pregnancy. Br J Cancer 86:1078–1080. doi:10.1038/sj.bjc.6600192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greenop KR, Blair EM, Bower C et al (2014) Factors relating to pregnancy and birth and the risk of childhood brain tumors: results from an Australian case–control study. Pediatr Blood Cancer 61:493–498. doi:10.1002/pbc

    Article  PubMed  Google Scholar 

  17. McLaughlin CC, Baptiste MS, Schymura MJ et al (2006) Birth weight, maternal weight and childhood leukaemia. Br J Cancer 94:1738–1744. doi:10.1038/sj.bjc.6603173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Podvin D, Kuehn CM, Mueller BA, Williams M (2006) Maternal and birth characteristics in relation to childhood leukaemia. Paediatr Perinat Epidemiol 20:312–322. doi:10.1111/j.1365-3016.2006.00731.x

    Article  PubMed  Google Scholar 

  19. Johnson KJ, Soler JT, Puumala SE et al (2008) Parental and infant characteristics and childhood leukemia in Minnesota. BMC Pediatr 8:7. doi:10.1186/1471-2431-8-7

    Article  PubMed  PubMed Central  Google Scholar 

  20. Milne E, Laurvick CL, Blair E et al (2007) Fetal growth and acute childhood leukemia: looking beyond birth weight. Am J Epidemiol 166:151–159. doi:10.1093/aje/kwm065

    Article  PubMed  Google Scholar 

  21. Petridou E, Trichopoulos D, Kalapothaki V et al (1997) The risk profile of childhood leukaemia in Greece: a nationwide case–control study. Br J Cancer 76:1241–1247. doi:10.1038/bjc.1997.541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petridou ET, Sergentanis TN, Skalkidou A et al (2015) Maternal and birth anthropometric characteristics in relation to the risk of childhood lymphomas: a Swedish nationwide cohort study. Eur J Cancer Prev 24:535–541. doi:10.1097/CEJ.0000000000000122

    Article  PubMed  Google Scholar 

  23. Musselman JRB, Georgieff MK, Ross JA et al (2013) Maternal pregnancy events and exposures and risk of hepatoblastoma: a Children’s Oncology Group (COG) study. Cancer Epidemiol 37:318–320. doi:10.1016/j.canep.2012.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heck JE, Omidakhsh N, Azary S et al (2015) A case-control study of sporadic retinoblastoma in relation to maternal health conditions and reproductive factors: a report from the Children’s Oncology group. BMC Cancer 15:735. doi:10.1186/s12885-015-1773-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. McLaughlin CC, Baptiste MS, Schymura MJ et al (2006) Maternal and infant birth characteristics and hepatoblastoma. Am J Epidemiol 163:818–828. doi:10.1093/aje/kwj104

    Article  PubMed  Google Scholar 

  26. Spector LG, Davies SM, Robison LL et al (2007) Birth characteristics, maternal reproductive history, and the risk of infant leukemia: a report from the children’s oncology group. Cancer Epidemiol Biomark Prev 16:128–134. doi:10.1158/1055-9965.EPI-06-0322

    Article  Google Scholar 

  27. Zhang CH, Liu XY, Zhan YW et al (2015) Effects of prepregnancy body mass index and gestational weight gain on pregnancy outcomes. Asia-Pac J Public Health 27:620–630. doi:10.1177/1010539515589810

    Article  CAS  PubMed  Google Scholar 

  28. Dimasuay KG, Boeuf P, Powell TL, Jansson T (2016) Placental responses to changes in the maternal environment determine fetal growth. Front Physiol 7:1–9. doi:10.3389/fphys.2016.00012

    Article  Google Scholar 

  29. Marshall NE, Guild C, Cheng YW et al (2014) The effect of maternal body mass index on perinatal outcomes in women with diabetes. Am J Perinatol 31:249–256. doi:10.1055/s-0033-1347363

    PubMed  Google Scholar 

  30. Ross JA (2006) High birthweight and cancer: evidence and implications. Cancer Epidemiol Biomark Prev. doi:10.1158/1055-9965.EPI-05-0923

    Google Scholar 

  31. Bowers K, Laughon SK, Kiely M et al (2013) Gestational diabetes, pre-pregnancy obesity and pregnancy weight gain in relation to excess fetal growth: variations by race/ethnicity. Diabetologia 56:1263–1271. doi:10.1007/s00125-013-2881-5

    Article  CAS  PubMed  Google Scholar 

  32. Jeric M, Roje D, Medic N et al (2013) Maternal pre-pregnancy underweight and fetal growth in relation to institute of medicine recommendations for gestational weight gain. Early Hum Dev. doi:10.1016/j.earlhumdev.2012.10.004

    PubMed  Google Scholar 

  33. Robbins CL, Zapata LB, Farr SL et al (2014) Core state preconception health indicators—pregnancy risk assessment monitoring system and behavioral risk factor surveillance system, 2009. MMWR Surveill Summ 63:1–62

    PubMed  Google Scholar 

  34. Bardenheier BH, Imperatore G, Devlin HM et al (2015) Trends in pre-pregnancy diabetes among deliveries in 19 U.S. States, 2000–2010. Am J Prev Med 48:154–161. doi:10.1016/j.amepre.2014.08.031

    Article  PubMed  Google Scholar 

  35. Bardenheier BH, Imperatore G, Gilboa SM et al (2015) Trends in gestational diabetes among hospital deliveries in 19 U.S. States, 2000–2010. Am J Prev Med 49:12–19. doi:10.1016/j.amepre.2015.01.026

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heck JE, Lombardi CA, Cockburn M et al (2013) Epidemiology of rhabdoid tumors of early childhood. Pediatr Blood Cancer 60:77–81. doi:10.1002/pbc.24141

    Article  PubMed  Google Scholar 

  37. Urayama KY, Von Behren J, Reynolds P et al (2009) Factors associated with residential mobility in children with leukemia: implications for assigning exposures. Ann Epidemiol 19:834–840. doi:10.1016/j.annepidem.2009.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hildebrand E, Källén B, Josefsson A et al (2014) Maternal obesity and risk of Down syndrome in the offspring. Prenat Diagn 34:310–315. doi:10.1002/pd.4294

    Article  PubMed  Google Scholar 

  39. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P (2005) International classification of childhood cancer, third edition. Cancer 103:1457–1467. doi:10.1002/cncr.20910

    Article  PubMed  Google Scholar 

  40. Ritz B, Wilhelm M, Hoggatt KJ, Ghosh JK (2007) Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am J Epidemiol 166:1045–1052. doi:10.1093/aje/kwm181

    Article  PubMed  Google Scholar 

  41. Alexander GR, Himes JH, Kaufman RB et al (1996) A United States national reference for fetal growth. Obstet Gynecol 87:163–168. doi:10.1016/0029-7844(95)00386-X

    Article  CAS  PubMed  Google Scholar 

  42. World Health Organization (WHO) (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation, World Health Organisation Technical Report Series 894:i–xii, 1–253

  43. Institute of Medicine (2009) Weight gain during pregnancy: reexamining the guidelines. National Academies Press, Washington, DC

  44. Yost K, Perkins C, Cohen R et al (2001) Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 12:703–711

    Article  CAS  PubMed  Google Scholar 

  45. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z,Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) (2015) SEER cancer statistics review, 1975–2012. National Cancer Institute, Bethesda. http://seer.cancer.gov/csr/1975_2012/. Accessed Sept 2015

  46. Oksuzyan S, Crespi CM, Cockburn M et al (2015) Race/ethnicity and the risk of childhood leukaemia: a case–control study in California. J Epidemiol Community Health 69:795–802

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chow EJ, Puumala SE, Mueller BA et al (2010) Childhood cancer in relation to parental race and ethnicity a 5-state pooled analysis. Cancer 116:3045–3053. doi:10.1002/cncr.25099

    Article  PubMed  PubMed Central  Google Scholar 

  48. Johnson KJ, Carozza SE, Chow EJ et al (2009) Parental age and risk of childhood cancer: a pooled analysis. Epidemiology 20:475–483. doi:10.1097/EDE.0b013e3181a5a332.Parental

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-Oncology 15:ii1–ii56. doi:10.1093/neuonc/not151

    Article  PubMed  PubMed Central  Google Scholar 

  50. Reece EA, Leguizamón G, Wiznitzer A (2009) Gestational diabetes: the need for a common ground. Lancet 373:1789–1797. doi:10.1016/S0140-6736(09)60515-8

    Article  PubMed  Google Scholar 

  51. Mitanchez D, Yzydorczyk C, Siddeek B et al (2015) The offspring of the diabetic mother—short- and long-term implications. Best Pract Res Clin Obstet Gynaecol 29:256–269. doi:10.1016/j.bpobgyn.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  52. Simmen FA, Simmen RCM (2011) The maternal womb: a novel target for cancer prevention in the era of the obesity pandemic? Eur J Cancer Prev 20:539–548. doi:10.1097/CEJ.0b013e328348fc21

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vambergue A, Nuttens MC, Verier-Mine O et al (2000) Is mild gestational hyperglycaemia associated with maternal and neonatal complications? The Diagest Study. Diabet Med 17:203–208. doi:10.1046/j.1464-5491.2000.00237.x

    Article  CAS  PubMed  Google Scholar 

  54. Aune D, Saugstad OD, Henriksen T, Tonstad S (2014) Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA 311:1536–1546. doi:10.1001/jama.2014.2269

    Article  CAS  PubMed  Google Scholar 

  55. Brown JE, Murtaugh MA, Jacobs DR, Margellos HC (2002) Variation in newborn size according to pregnancy weight change by trimester. Am J Clin Nutr 76:205–209

    CAS  PubMed  Google Scholar 

  56. Reichman NE, Hade EM (2001) Validation of birth certificate data: a study of women in New Jersey’s healthstart program. Ann Epidemiol 11:186–193. doi:10.1016/S1047-2797(00)00209-X

    Article  CAS  PubMed  Google Scholar 

  57. Devlin HM, Desai J, Walaszek A (2009) Reviewing performance of birth certificate and hospital discharge data to identify births complicated by maternal diabetes. Matern Child Health J 13:660–666. doi:10.1007/s10995-008-0390-9

    Article  PubMed  Google Scholar 

  58. Park S, Sappenfield WM, Bish C et al (2011) Reliability and validity of birth certificate prepregnancy weight and height among women enrolled in prenatal WIC program: Florida, 2005. Matern Child Health J 15:851–859. doi:10.1007/s10995-009-0544-4

    Article  PubMed  Google Scholar 

  59. Bodnar LM, Abrams B, Bertolet M et al (2014) Validity of birth certificate-derived maternal weight data. Paediatr Perinat Epidemiol 28:203–212. doi:10.1111/ppe.12120

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36:277–285. doi:10.1016/j.ctrv.2010.02.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants R21ES018960 and R21ES019986 from the US National Institutes of Health. Ms. Contreras was supported by the predoctoral fellowship T32CA009142 from the US National Institutes of Health and received the Cornelius Hopper Diversity Award Supplement (grant # 24RT-0033H) from the California Tobacco-Related Disease Research Program. Dr. Cockburn was supported in part by the National Cancer Institute’s Surveillance, Epidemiology and End Results Program under Contract HHSN261201000140C awarded to the Cancer Prevention Institute of California, Contract HHSN261201000035C awarded to the University of Southern California, and Contract HHSN261201000034C awarded to the Public Health Institute, as well as the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under Agreement U58DP003862-01 awarded to the California Department of Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia E. Heck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, Z.A., Ritz, B., Virk, J. et al. Maternal pre-pregnancy and gestational diabetes, obesity, gestational weight gain, and risk of cancer in young children: a population-based study in California. Cancer Causes Control 27, 1273–1285 (2016). https://doi.org/10.1007/s10552-016-0807-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-016-0807-5

Keywords

Navigation