Skip to main content

Advertisement

Log in

Polymorphisms in the carcinogen detoxification genes CYB5A and CYB5R3 and breast cancer risk in African American women

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Cytochrome b 5 (encoded by CYB5A) and NADH cytochrome b 5 reductase (encoded by CYB5R3) detoxify aromatic and heterocyclic amine mammary carcinogens found in cigarette smoke. We hypothesized that CYB5A and CYB5R3 polymorphisms would be associated with breast cancer risk in women.

Methods

We characterized the prevalence of 18 CYB5A and CYB5R3 variants in genomic DNA from African American (AfrAm) and Caucasian (Cauc) women from the Carolina Breast Cancer Study population (1,946 cases and 1,747 controls) and determined their associations with breast cancer risk, with effect modification by smoking.

Results

A CYB5R3 variant, I1M+6T (rs8190370), was significantly more common in breast cancer cases (MAF 0.0238) compared with controls (0.0169, p = 0.039); this was attributable to a higher MAF in AfrAm cases (0.0611) compared with AfrAm controls (0.0441, p = 0.046; adjusted OR 1.41, CI 0.98–2.04; p = 0.062). When smoking was considered, I1M+6T was more strongly associated with breast cancer risk in AfrAm smokers (adjusted OR 2.10, 1.08–4.07; p = 0.028) compared with never smokers (OR = 1.21; 0.77–1.88; p for interaction = 0.176). I1M+6T and three additional CYB5R3 variants, -251T, I8-1676C, and *392C, as well as two CYB5A variants, 13G and I2-992T, were significantly more common in AfrAms compared with Caucs.

Conclusions

CYB5R3 I1M+6C>T should be considered in future molecular epidemiologic studies of breast cancer risk in AfrAms. Further, variants in CYB5A and CYB5R3 should be considered in the evaluation of other tumors in AfrAms that are associated with aromatic and heterocyclic amine exposures, to include prostate, bladder, and colon cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kelsey JL, Horn-Ross PL (1993) Breast cancer: magnitude of the problem and descriptive epidemiology. Epidemiol Rev 15:7–16

    PubMed  CAS  Google Scholar 

  2. McPherson K, Steel CM, Dixon JM (2000) ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ 321:624–628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Hecht SS (2002) Tobacco smoke carcinogens and breast cancer. Environ Mol Mutagen 39:119–126

    Article  PubMed  CAS  Google Scholar 

  4. Shan L, Yu M, Snyderwine EG (2005) Gene expression profiling of chemically induced rat mammary gland cancer. Carcinogenesis 26:503–509

    Article  PubMed  CAS  Google Scholar 

  5. Ghoshal A, Preisegger KH, Takayama S, Thorgeirsson SS, Snyderwine EG (1994) Induction of mammary tumors in female Sprague–Dawley rats by the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and effect of dietary fat. Carcinogenesis 15:2429–2433

    Article  PubMed  CAS  Google Scholar 

  6. Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S et al (1991) A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis 12:1503–1506

    Article  PubMed  CAS  Google Scholar 

  7. Snyderwine EG, Thorgeirsson UP, Venugopal M, Roberts-Thomson SJ (1998) Mammary gland carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in Sprague–Dawley rats on high- and low-fat diets. Nutr Cancer 31:160–167

    Article  PubMed  CAS  Google Scholar 

  8. Lightfoot TJ, Coxhead JM, Cupid BC, Nicholson S, Garner RC (2000) Analysis of DNA adducts by accelerator mass spectrometry in human breast tissue after administration of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and benzo[a]pyrene. Mutat Res 472:119–127

    Article  PubMed  CAS  Google Scholar 

  9. Pfau W, Stone EM, Brockstedt U, Carmichael PL, Marquardt H, Phillips DH (1998) DNA adducts in human breast tissue: association with N-acetyltransferase-2 (NAT2) and NAT1 genotypes. Cancer Epidemiol Biomarkers Prev 7:1019–1025

    PubMed  CAS  Google Scholar 

  10. Faraglia B, Chen S, Gammon M, Zhang Y, Teitelbaum S, Neugat A et al (2003) Evaluation of 4-aminobiphenyl-DNA adducts in human breast cancer: the influence of tobacco smoke. Carcinogenesis 24:719–725

    Article  PubMed  CAS  Google Scholar 

  11. Firozi PF, Bondy ML, Sahin AA, Chang P, Lukmanji F, Singletary ES et al (2002) Aromatic DNA adducts and polymorphisms of CYP1A1, NAT2, and GSTM1 in breast cancer. Carcinogenesis 23:301–306

    Article  PubMed  CAS  Google Scholar 

  12. Li D, Wang M, Dhingra K, Hittelman WN (1996) Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology. Cancer Res 56:287–293

    PubMed  CAS  Google Scholar 

  13. Zhu J, Chang P, Bondy ML, Sahin AA, Singletary SE, Takahashi S et al (2003) Detection of 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine-DNA adducts in normal breast tissues and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 12:830–837

    PubMed  CAS  Google Scholar 

  14. Bennicke K, Conrad C, Sabroe S, Sorensen HT (1995) Cigarette smoking and breast cancer. BMJ (Clin Res Ed) 310:1431–1433

    Article  CAS  Google Scholar 

  15. Brownson RC, Blackwell CW, Pearson DK, Reynolds RD, Richens JW Jr, Papermaster BW (1988) Risk of breast cancer in relation to cigarette smoking. Arch Intern Med 148:140–144

    Article  PubMed  CAS  Google Scholar 

  16. Calle EE, Miracle-McMahill HL, Thun MJ, Heath CW Jr (1994) Cigarette smoking and risk of fatal breast cancer. Am J Epidemiol 139:1001–1007

    PubMed  CAS  Google Scholar 

  17. Lash TL, Aschengrau A (1999) Active and passive cigarette smoking and the occurrence of breast cancer. Am J Epidemiol 149:5–12

    Article  PubMed  CAS  Google Scholar 

  18. Marcus PM, Newman B, Millikan RC, Moorman PG, Baird DD, Qaqish B (2000) The associations of adolescent cigarette smoking, alcoholic beverage consumption, environmental tobacco smoke, and ionizing radiation with subsequent breast cancer risk (United States). Cancer Causes Control 11:271–278

    Article  PubMed  CAS  Google Scholar 

  19. Meara J, McPherson K, Roberts M, Jones L, Vessey M (1989) Alcohol, cigarette smoking and breast cancer. Br J Cancer 60:70–73

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Terry PD, Rohan TE (2002) Cigarette smoking and the risk of breast cancer in women: a review of the literature. Cancer Epidemiol Biomarkers Prev 11:953–971

    PubMed  Google Scholar 

  21. Baron JA, Byers T, Greenberg ER, Cummings KM, Swanson M (1986) Cigarette smoking in women with cancers of the breast and reproductive organs. J Natl Cancer Inst 77:677–680

    PubMed  CAS  Google Scholar 

  22. Braga C, Negri E, La Vecchia C, Filiberti R, Franceschi S (1996) Cigarette smoking and the risk of breast cancer. Eur J Cancer Prev 5:159–164

    Article  PubMed  CAS  Google Scholar 

  23. Chu SY, Stroup NE, Wingo PA, Lee NC, Peterson HB, Gwinn ML (1990) Cigarette smoking and the risk of breast cancer. Am J Epidemiol 131:244–253

    PubMed  CAS  Google Scholar 

  24. Egan KM, Stampfer MJ, Hunter D, Hankinson S, Rosner BA, Holmes M et al (2002) Active and passive smoking in breast cancer: prospective results from the nurses’ health study. Epidemiology 13:138–145

    Article  PubMed  Google Scholar 

  25. Field NA, Baptiste MS, Nasca PC, Metzger BB (1992) Cigarette smoking and breast cancer. Int J Epidemiol 21:842–848

    Article  PubMed  CAS  Google Scholar 

  26. Hunter DJ, Hankinson SE, Hough H, Gertig DM, Garcia-Closas M, Spiegelman D et al (1997) A prospective study of NAT2 acetylation genotype, cigarette smoking, and risk of breast cancer. Carcinogenesis 18:2127–2132

    Article  PubMed  CAS  Google Scholar 

  27. Millikan RC, Pittman GS, Newman B, Tse CK, Selmin O, Rockhill B et al (1998) Cigarette smoking, N-acetyltransferases 1 and 2, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 7:371–378

    PubMed  CAS  Google Scholar 

  28. Vatten LJ, Kvinnsland S (1990) Cigarette smoking and risk of breast cancer: a prospective study of 24,329 Norwegian women. Eur J Cancer 26:830–833

    Article  PubMed  CAS  Google Scholar 

  29. Bartsch H (1981) Metabolic activation of aromatic amines and azo dyes. IARC Sci Publ 40:13–30

    PubMed  CAS  Google Scholar 

  30. Fan L, Schut HA, Snyderwine EG (1995) Cytotoxicity, DNA adduct formation and DNA repair induced by 2-hydroxyamino-3-methylimidazo[4,5-f]quinoline and 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine in cultured human mammary epithelial cells. Carcinogenesis 16:775–779

    Article  PubMed  CAS  Google Scholar 

  31. Turesky RJ, Lang NP, Butler MA, Teitel CH, Kadlubar FF (1991) Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon. Carcinogenesis 12:1839–1845

    Article  PubMed  CAS  Google Scholar 

  32. Stone EM, Williams JA, Grover PL, Gusterson BA, Phillips DH (1998) Interindividual variation in the metabolic activation of heterocyclic amines and their N-hydroxy derivatives in primary cultures of human mammary epithelial cells. Carcinogenesis 19:873–879

    Article  PubMed  CAS  Google Scholar 

  33. Kurian JR, Chin NA, Longlais BJ, Hayes KL, Trepanier LA (2006) Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5. Chem Res Toxicol 19:1366–1373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. King R, Teitel C, Shaddock J, Casciano D, Kadlubar F (1999) Detoxification of carcinogenic aromatic and heterocyclic amines by enzymatic reduction of the N-hydroxy derivative. Cancer Lett 143:167–171

    Article  PubMed  CAS  Google Scholar 

  35. Sacco JC, Trepanier LA (2010) Cytochrome b5 and NADH cytochrome b5 reductase: genotype–phenotype correlations for hydroxylamine reduction. Pharmacogenet Genomics 20:26–37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Rhoads K, Sacco JC, Drescher N, Wong A, Trepanier LA (2011) Individual variability in the detoxification of carcinogenic arylhydroxylamines in human breast. Toxicol Sci 121:245–256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Newman B, Moorman PG, Millikan R, Qaqish BF, Geradts J, Aldrich TE et al (1995) The Carolina Breast Cancer Study: integrating population-based epidemiology and molecular biology. Breast Cancer Res Treat 35:51–60

    Article  PubMed  CAS  Google Scholar 

  38. Nyante SJ, Gammon MD, Kaufman JS, Bensen JT, Lin DY, Barnholtz-Sloan JS et al (2011) Common genetic variation in adiponectin, leptin, and leptin receptor and association with breast cancer subtypes. Breast Cancer Res Treat 129:593–606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Moorman PG, Newman B, Millikan RC, Tse CK, Sandler DP (1999) Participation rates in a case-control study: the impact of age, race, and race of interviewer. Ann Epidemiol 9:188–195

    Article  PubMed  CAS  Google Scholar 

  40. ENCODE Project Consortium (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9:e1001046

    Article  Google Scholar 

  41. Barnholtz-Sloan JS, Shetty PB, Guan X, Nyante SJ, Luo J, Brennan DJ et al (2010) FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 31:1417–1423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Barnholtz-Sloan JS, McEvoy B, Shriver MD, Rebbeck TR (2008) Ancestry estimation and correction for population stratification in molecular epidemiologic association studies. Cancer Epidemiol Biomarkers Prev 17:471–477

    Article  PubMed  CAS  Google Scholar 

  43. Tian C, Hinds DA, Shigeta R, Kittles R, Ballinger DG, Seldin MF (2006) A genomewide single-nucleotide-polymorphism panel with high ancestry information for African American admixture mapping. Am J Hum Genet 79:640–649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Schell T, Kulozik AE, Hentze MW (2002) Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol 3:reviews pp 1006.1–.6

  45. Hultquist D, Passon P (1971) Catalysis of methaemoglobin reduction by erythrocyte cytochrome b5 and cytochrome b5 reductase. Nat New Biol 229:252–254

    Article  PubMed  CAS  Google Scholar 

  46. Kitao T, Sugita Y, Yoneyama Y, Hattori K (1974) Methemoglobin reductase (cytochrome b5 reductase) deficiency in congenital methemoglobinemia. Blood 44:879–884

    PubMed  CAS  Google Scholar 

  47. Hegesh E, Hegesh J, Kaftory A (1986) Congenital methemoglobinemia with a deficiency of cytochrome b5. N Engl J Med 314:757–761

    Article  PubMed  CAS  Google Scholar 

  48. Xu Y, Kiningham KK, Devalaraja MN, Yeh CC, Majima H, Kasarskis EJ et al (1999) An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol 18:709–722

    Article  PubMed  CAS  Google Scholar 

  49. Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N et al (2003) NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 22:90–97

    Article  PubMed  CAS  Google Scholar 

  50. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  51. Hall IJ, Moorman PG, Millikan RC, Newman B (2005) Comparative analysis of breast cancer risk factors among African-American women and White women. Am J Epidemiol 161:40–51

    Article  PubMed  Google Scholar 

  52. Mayberry RM, Stoddard-Wright C (1992) Breast cancer risk factors among black women and white women: similarities and differences. Am J Epidemiol 136:1445–1456

    PubMed  CAS  Google Scholar 

  53. Li Y, Millikan RC, Bell DA, Cui L, Tse CK, Newman B et al (2004) Cigarette smoking, cytochrome P4501A1 polymorphisms, and breast cancer among African-American and white women. Breast Cancer Res 6:R460–R473

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Mechanic L, Millikan RC, Player J, RenedeCotret A, Winkel S, Worley K et al (2006) Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and whites: a population-based case-control study. Carcinogenesis 27:1377–1385

    Article  PubMed  CAS  Google Scholar 

  55. Terry PD, Rohan TE (2002) Cigarette smoking and the risk of breast cancer in women: a review of the literature. Cancer Epidemiol Biomarkers Prev 11:953–971

    PubMed  Google Scholar 

  56. Tang D, Liu JJ, Rundle A, Neslund-Dudas C, Savera AT, Bock CH et al (2007) Grilled meat consumption and PhIP-DNA adducts in prostate carcinogenesis. Cancer Epidemiol Biomarkers Prev 16:803–808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Letasiova S, Medve’ova A, Sovcikova A, Dusinska M, Volkovova K, Mosoiu C et al (2012) Bladder cancer, a review of the environmental risk factors. Environ Health 11(Suppl 1):S11

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ferrucci LM, Sinha R, Huang WY, Berndt SI, Katki HA, Schoen RE et al (2012) Meat consumption and the risk of incident distal colon and rectal adenoma. Br J Cancer 106:608–616

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  59. Kurian J, Bajad S, Miller J, Chin N, Trepanier L (2004) NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans. J Pharmacol Exp Ther 311(3):1171–1178

    Article  PubMed  CAS  Google Scholar 

  60. Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S et al (2010) UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38:D75–D80

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Baird SD, Turcotte M, Korneluk RG, Holcik M (2006) Searching for IRES. RNA 12:1755–1785

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Jessica Tse, at the Mammalian Genotyping Core at the University of North Carolina at Chapel Hill, for genotype analyses and Dr. Elim Lau at the University of Wisconsin Carbone Comprehensive Cancer Center (UWCCC) for performing pyrosequencing. The authors also acknowledge the kind assistance of Dr. Richard Weinshilboum, whose laboratory performed initial screening of selected allele frequencies in Coriell DNA samples from African American subjects. Finally, the PI thanks Dr. Andrew Olshan, who was instrumental in the completion of this manuscript following the unexpected death of Dr. Robert Millikan. This study was supported by a grant from the Prevent Cancer Foundation, and in part by R01 GM61753 from the National Institutes of Health. Kristina Blanke was supported by an NIH/NIEHS training grant in Molecular and Environmental Toxicology (T32 ES007015). The Carolina Breast Cancer Study was funded by the Specialized Program of Research Excellence (SPORE) in Breast Cancer at UNC (NIH/NCI P50-CA58223) and the Lineberger Comprehensive Cancer Center Core Grant (P30-CA16086). The University of Wisconsin Carbone Comprehensive Cancer Center (UWCCC) facilities are supported by NIH/NCI P30 CA014520. Dr. Richard Weinshilboum’s contributions to preliminary data were supported by NIH/NIGMS grant U19 GM061388.

Conflict of interest

The authors assert that they have no relationships that could be construed as resulting in an actual, potential, or perceived conflict of interest relative to the work in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren A. Trepanier.

Additional information

Robert C. Millikan: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanke, K.L., Sacco, J.C., Millikan, R.C. et al. Polymorphisms in the carcinogen detoxification genes CYB5A and CYB5R3 and breast cancer risk in African American women. Cancer Causes Control 25, 1513–1521 (2014). https://doi.org/10.1007/s10552-014-0454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-014-0454-7

Keywords

Navigation