Skip to main content

Advertisement

Log in

Association between BRAF V600E and NRAS Q61R mutations and clinicopathologic characteristics, risk factors and clinical outcome of primary invasive cutaneous melanoma

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Previous studies suggest that solar UV exposure in early life is predictive of cutaneous melanoma risk in adulthood, whereas the relation of BRAF mutation with sun exposure and disease prognosis has been less certain. We investigated the associations between BRAFV600E and NRASQ61R mutations and known risk factors, clinicopathologic characteristics and clinical outcomes of melanoma in a case series of primary invasive cutaneous melanoma from the Nurses’ Health Study (NHS).

Methods

Somatic BRAFV600E and NRASQ61R mutations of 127 primary invasive melanomas from the NHS cohort were determined by pyrosequencing using formalin-fixed, paraffin-embedded block tissues. Logistic regression analyses were performed to detect the associations of mutations with melanoma risk factors, and Kaplan–Meier method was used to examine associations between mutations and survival.

Results

The odds ratios for harboring BRAFV600E mutations were 5.54 (95 % CI 1.19–25.8, p trend = 0.02) for women residing in states with UV index ≥ 7 versus those residing in states with UV index ≤5 at 30 years of age. Patients with BRAFV600E mutations tended to have shorter melanoma-specific survival when compared to patients with wild type at both loci (median survival time 110 vs. 159 months) (p = 0.03). No association was found between NRASQ61R mutation and melanoma risk factors or melanoma-specific survival.

Conclusions

BRAFV600E mutations in primary cutaneous melanomas were associated with residence in locations with medium and high UV indices in mid-life. BRAFV600E mutation may be associated with an unfavorable prognosis among melanoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Geller AC, Miller DR, Annas GD et al (2002) Melanoma incidence and mortality among US whites, 1969–1999. JAMA 288:1719–1720

    Article  PubMed  Google Scholar 

  2. Jemal A, Devesa SS, Hartge P et al (2001) Recent trends in cutaneous melanoma incidence among Whites in the United States. J Natl Cancer Inst 93:678–683

    Article  CAS  PubMed  Google Scholar 

  3. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  4. Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 41:28–44

    Article  PubMed  Google Scholar 

  5. Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur J Cancer 41:2040–2059

    Article  PubMed  Google Scholar 

  6. Hacker E, Hayward NK, Dumenil T et al (2010) The association between MC1R genotype and BRAF mutation status in cutaneous melanoma: findings from an Australian population. J Invest Dermatol 130(1):241–248

    Article  CAS  PubMed  Google Scholar 

  7. Qureshi AA, Zhang M, Han J (2011) Heterogeneity in host risk factors for incident melanoma and non-melanoma skin cancer in a cohort of US women. J Epidemiol 21(3):197–203

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 41:45–60

    Article  PubMed  Google Scholar 

  9. Whiteman DC, Watt P, Purdie DM et al (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J Natl Cancer Inst 95:806–812

    Article  PubMed  Google Scholar 

  10. Whiteman DC, Stickley M, Watt P et al (2006) Anatomic site, sun exposure, and risk of cutaneous melanoma. J Clin Oncol 24:3172–3177

    Article  PubMed  Google Scholar 

  11. Curtin JA, Fridlyand J, Kageshita T et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  CAS  PubMed  Google Scholar 

  12. Landi MT, Bauer J, Pfeiffer RM et al (2006) MC1R germline variants confer risk for BRAF -mutant melanoma. Science 313:521–522

    Article  CAS  PubMed  Google Scholar 

  13. Maldonado JL, Fridlyand J, Patel H et al (2003) Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 95:1878–1890

    Article  CAS  PubMed  Google Scholar 

  14. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  15. Goydos JS, MannB Kim HJ et al (2005) Detection of B-RAF and N-RAS mutations in human melanoma. J Am Coll Surg 200:362–370

    Article  PubMed  Google Scholar 

  16. van Elsas A, Zerp SF, van der Flier S et al (1996) Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma. Am J Pathol 149:883–893

    PubMed Central  PubMed  Google Scholar 

  17. Ellerhorst JA, Greene VR, Ekmekcioglu S et al (2011) Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin Cancer Res 17(2):229–235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Campbell PM, Der CJ (2004) Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol 14:105–114

    Article  CAS  PubMed  Google Scholar 

  19. Meier F, Schittek B, Busch S et al (2005) The RAS/RAF/MEK/ERK and PI3 K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 10:2986–3001

    Article  CAS  PubMed  Google Scholar 

  20. Kudchadkar RR, Smalley KS, Glass LF et al (2013) Targeted therapy in melanoma. Clin Dermatol 31(2):200–208

    Article  PubMed  Google Scholar 

  21. Edlundh-Rose E, Egyhazi S, Omholt K et al (2006) NRAS and BRAF mutations in melanoma tumours in relation to clinical characteristics: a study based on mutation screening by pyrosequencing. Melanoma Res 16:471–478

    Article  CAS  PubMed  Google Scholar 

  22. Autier P, Doré JF (1998) Influence of sun exposures during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European Organisation for Research and Treatment of Cancer. Int J Cancer 77(4):533–537

    Article  CAS  PubMed  Google Scholar 

  23. Qureshi AA, Laden F, Colditz GA et al (2008) Geographic variation and risk of skin cancer in US women. Differences between melanoma, squamous cell carcinoma, and basal cell carcinoma. Arch Intern Med 168(5):501–507

    Article  PubMed  Google Scholar 

  24. Whiteman DC, Whiteman CA, Green AC (2001) Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 12:69–82

    Article  CAS  PubMed  Google Scholar 

  25. Lee JH, Choi JW, Kim YS (2011) Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol 164(4):776–784

    Article  CAS  PubMed  Google Scholar 

  26. Thomas NE, Edmiston SN, Alexander A et al (2007) Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol Biomarkers Prev 16:991–997

    Article  CAS  PubMed  Google Scholar 

  27. Venesio T, Chiorino G, Balsamo A et al (2008) In melanocytic lesions the fraction of BRAF V600E alleles is associated with sun exposure but unrelated to ERK phosphorylation. Mod Pathol 21:716–726

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Kelly JW, Trivett M, Murray WK, Dowling JP, Wolfe R et al (2007) Distinct clinical and pathological features are associated with the BRAF (T1799A(V600E)) mutation in primary melanoma. J Invest Dermatol 127(4):900–905

    Article  CAS  PubMed  Google Scholar 

  29. Thomas NE, Berwick M, Cordeiro-Stone M (2006) Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? J Invest Dermatol 126:1693–1696

    Article  CAS  PubMed  Google Scholar 

  30. Willmore-Payne C, Holden JA, Tripp S, Layfield LJ (2005) Human malignant melanoma: detection of BRAF- and c-kit-activating mutations by high-resolution amplicon melting analysis. Hum Pathol 36(5):486–493

    Article  CAS  PubMed  Google Scholar 

  31. Poynter JN, Elder JT, Fullen DR et al (2006) BRAF and NRAS mutations in melanoma and melanocytic nevi. Melanoma Res 16(4):267–273

    Article  PubMed  Google Scholar 

  32. Long GV, Menzies AM, Nagrial AM et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29(10):1239–1246

    Article  PubMed  Google Scholar 

  33. Devitt B, Liu W, Salemi R et al (2011) Clinical outcome and pathological features associated with NRAS mutation in cutaneous melanoma. Pigment Cell Melanoma Res 24(4):666–672

    Article  CAS  PubMed  Google Scholar 

  34. Akslen LA, Angelini S, Straume O et al (2005) BRAF and NRAS mutations are frequent in nodular melanoma but are not associated with tumor cell proliferation or patient survival. J Invest Dermatol 125:312–317

    CAS  PubMed  Google Scholar 

  35. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 367(2):107–114

    Article  CAS  PubMed  Google Scholar 

  37. Sivertsson A, Platz A, Hansson J, Lundeberg J (2002) Pyrosequencing as an alternative to single-strand conformation polymorphism analysis for detection of N-ras mutations in human melanoma metastases. Clin Chem 48:2164–2170

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to the staff of the Nurses’ Health Study for their valuable contributions as well as the following state cancer registries for their help: A.L., A.Z., A.R., C.A., C.O., C.T., D.E., F.L., G.A., I.D., I.L., I.N., I.A., K.Y., L.A., M.E., M.D., M.A., M.I., N.E., N.H., N.J., N.Y., N.C., N.D., O.H., O.K., O.R., P.A., R.I., S.C., T.N., T.X., V.A., W.A., W.Y. In addition, this study was approved by the Connecticut Department of Public Health (DPH) Human Investigations Committee. Certain data used in this publication were obtained from the DPH. This work was supported by the Department of Dermatology, Brigham and Women’s Hospital, Boston, Massachusetts, and two grants from NCI (P01 CA87969 and R01 CA137365).

Conflict of interest

A.Q. serves as a consultant for Abbott, Centocor, Novartis and the Centres for Disease Control and Prevention. The other authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abrar A. Qureshi.

Additional information

Shaowei Wu and Helen Kuo share joint first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Kuo, H., Li, WQ. et al. Association between BRAF V600E and NRAS Q61R mutations and clinicopathologic characteristics, risk factors and clinical outcome of primary invasive cutaneous melanoma. Cancer Causes Control 25, 1379–1386 (2014). https://doi.org/10.1007/s10552-014-0443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-014-0443-x

Keywords

Navigation