Skip to main content

Advertisement

Log in

Urinary lignans and inflammatory markers in the US National Health and Nutrition Examination Survey (NHANES) 1999–2004 and 2005–2008

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Chronic inflammation has been implicated in the etiology of various chronic diseases. We previously found that certain urinary isoflavones are associated with markers of inflammation. In the present study, we examined the associations of serum C-reactive protein (CRP) and white blood cell (WBC) count with lignans, which are more frequent in the Western diet than isoflavones.

Methods

Our analysis included 2,028 participants of NHANES 2005–2008 and 2,628 participants of NHANES 1999–2004 aged 18 years and older. The exposures of interest were urinary mammalian lignans (enterodiol and enterolactone). Outcome variables were two inflammatory markers (CRP [≤10 mg/L] and WBC [≥3.0 and ≤11.7 (1,000 cells/μL)]). Log-transformed CRP concentration and WBC count by log-transformed creatinine-standardized concentrations of mammalian lignans were used for linear regression.

Results

Statistically significant inverse associations of urinary lignan, enterodiol, and enterolactone concentrations with circulating CRP and WBC counts were observed in the multivariate-adjusted models: In NHANES 2005–2008, per one-percent increase in lignan concentrations in the urine, CRP concentrations and WBC counts decreased by 8.1 % (95 % CI −11.5, −4.5) and 1.9 % (95 % CI −2.7; −1.2), respectively. Per one-percent increase in enterodiol and enterolactone, WBC counts decreased by 2.1 % (95 % CI −2.8, −1.3) and 1.3 % (95 % CI −1.9, −0.6), respectively. In NHANES 1999–2004, analogous results were 3.0 % (95 % CI −5.6, −0.3), 1.2 % (95 % CI −2.0; −0.4), 1.0 % (95 % CI −1.8, −0.2), and 0.8 % (95 % CI −1.4, 0.2).

Conclusions

Mammalian lignans were inversely associated with markers of chronic inflammation. Due to the cross-sectional design, our findings require confirmation in prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu SH, Shu XO, Chow WH, Xiang YB, Zhang X, Li HL, Cai Q, Ji BT, Cai H, Rothman N, Gao YT, Zheng W, Yang G (2012) Soy food intake and circulating levels of inflammatory markers in Chinese women. J Acad Nutr Diet 112(7):996–1004. doi:10.1016/j.jand.2012.04.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Touvier M, Fezeu L, Ahluwalia N, Julia C, Charnaux N, Sutton A, Mejean C, Latino-Martel P, Hercberg S, Galan P, Czernichow S (2013) Association between prediagnostic biomarkers of inflammation and endothelial function and cancer risk: a nested case-control study. Am J Epidemiol 177(1):3–13. doi:10.1093/aje/kws359

    Article  PubMed  Google Scholar 

  3. Kotani K, Sakane N (2012) White blood cells, neutrophils, and reactive oxygen metabolites among asymptomatic subjects. Int J Prev Med 3(6):428–431

    PubMed Central  PubMed  Google Scholar 

  4. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342(12):836–843. doi:10.1056/NEJM200003233421202

    Article  CAS  PubMed  Google Scholar 

  5. Iida M, Ikeda F, Ninomiya T, Yonemoto K, Doi Y, Hata J, Matsumoto T, Kiyohara Y (2012) White blood cell count and risk of gastric cancer incidence in a general Japanese population: the Hisayama study. Am J Epidemiol 175(6):504–510. doi:10.1093/aje/kwr345

    Article  PubMed  Google Scholar 

  6. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111(12):1805–1812. doi:10.1172/JCI18921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Siemes C, Visser LE, Coebergh JW, Splinter TA, Witteman JC, Uitterlinden AG, Hofman A, Pols HA, Stricker BH (2006) C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol 24(33):5216–5222. doi:10.1200/JCO.2006.07.1381

    Article  CAS  PubMed  Google Scholar 

  8. Saito K, Kihara K (2011) C-reactive protein as a biomarker for urological cancers. Nat Rev Urol 8(12):659–666. doi:10.1038/nrurol.2011.145

    CAS  PubMed  Google Scholar 

  9. Bazzano LA, He J, Muntner P, Vupputuri S, Whelton PK (2003) Relationship between cigarette smoking and novel risk factors for cardiovascular disease in the United States. Ann Intern Med 138(11):891–897

    Article  PubMed  Google Scholar 

  10. Wener MH, Daum PR, McQuillan GM (2000) The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. J Rheumatol 27(10):2351–2359

    CAS  PubMed  Google Scholar 

  11. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282(22):2131–2135

    Article  CAS  PubMed  Google Scholar 

  12. Imhof A, Froehlich M, Brenner H, Boeing H, Pepys MB, Koenig W (2001) Effect of alcohol consumption on systemic markers of inflammation. Lancet 357(9258):763–767. doi:10.1016/S0140-6736(00)04170-2

    Article  CAS  PubMed  Google Scholar 

  13. Yu Z, Ye X, Wang J, Qi Q, Franco OH, Rennie KL, Pan A, Li H, Liu Y, Hu FB, Lin X (2009) Associations of physical activity with inflammatory factors, adipocytokines, and metabolic syndrome in middle-aged and older chinese people. Circulation 119(23):2969–2977. doi:10.1161/CIRCULATIONAHA.108.833574

    Article  CAS  PubMed  Google Scholar 

  14. Nanri H, Nakamura K, Hara M, Higaki Y, Imaizumi T, Taguchi N, Sakamoto T, Horita M, Shinchi K, Tanaka K (2011) Association between dietary pattern and serum C-reactive protein in Japanese men and women. J Epidemiol 21(2):122–131

    Article  PubMed  Google Scholar 

  15. Zalokar JB, Richard JL, Claude JR (1981) Leukocyte count, smoking, and myocardial infarction. N Engl J Med 304(8):465–468. doi:10.1056/NEJM198102193040806

    Article  CAS  PubMed  Google Scholar 

  16. Dixon JB, O’Brien PE (2006) Obesity and the white blood cell count: changes with sustained weight loss. Obes Surg 16(3):251–257. doi:10.1381/096089206776116453

    Article  PubMed  Google Scholar 

  17. Aminzadeh Z, Parsa E (2011) Relationship between age and peripheral white blood cell count in patients with sepsis. Int J Prev Med 2(4):238–242

    PubMed Central  PubMed  Google Scholar 

  18. Pitsavos C, Chrysohoou C, Panagiotakos DB, Skoumas J, Zeimbekis A, Kokkinos P, Stefanadis C, Toutouzas PK (2003) Association of leisure-time physical activity on inflammation markers (C-reactive protein, white cell blood count, serum amyloid A, and fibrinogen) in healthy subjects (from the ATTICA study). Am J Cardiol 91(3):368–370

    Article  CAS  PubMed  Google Scholar 

  19. Pradhan AD, Manson JE, Rossouw JE, Siscovick DS, Mouton CP, Rifai N, Wallace RB, Jackson RD, Pettinger MB, Ridker PM (2002) Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA 288(8):980–987

    Article  CAS  PubMed  Google Scholar 

  20. Yoneyama S, Miura K, Sasaki S, Yoshita K, Morikawa Y, Ishizaki M, Kido T, Naruse Y, Nakagawa H (2007) Dietary intake of fatty acids and serum C-reactive protein in Japanese. J Epidemiol 17(3):86–92

    Article  PubMed  Google Scholar 

  21. Ma Y, Griffith JA, Chasan-Taber L, Olendzki BC, Jackson E, Stanek EJ 3rd, Li W, Pagoto SL, Hafner AR, Ockene IS (2006) Association between dietary fiber and serum C-reactive protein. Am J Clin Nutr 83(4):760–766

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Esmaillzadeh A, Kimiagar M, Mehrabi Y, Azadbakht L, Hu FB, Willett WC (2006) Fruit and vegetable intakes, C-reactive protein, and the metabolic syndrome. Am J Clin Nutr 84(6):1489–1497

    CAS  PubMed  Google Scholar 

  23. Zampelas A, Panagiotakos DB, Pitsavos C, Das UN, Chrysohoou C, Skoumas Y, Stefanadis C (2005) Fish consumption among healthy adults is associated with decreased levels of inflammatory markers related to cardiovascular disease: the ATTICA study. J Am Coll Cardiol 46(1):120–124. doi:10.1016/j.jacc.2005.03.048

    Article  CAS  PubMed  Google Scholar 

  24. Yang M, Chung SJ, Floegel A, Song WO, Koo SI, Chun OK (2013) Dietary antioxidant capacity is associated with improved serum antioxidant status and decreased serum C-reactive protein and plasma homocysteine concentrations. Eur J Nutr. doi:10.1007/s00394-012-0491-5

    Google Scholar 

  25. Chun OK, Chung SJ, Claycombe KJ, Song WO (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J Nutr 138(4):753–760

    CAS  PubMed  Google Scholar 

  26. Yang M, Chung SJ, Floegel A, Song WO, Koo SI, Chun OK (2013) Dietary antioxidant capacity is associated with improved serum antioxidant status and decreased serum C-reactive protein and plasma homocysteine concentrations. Eur J Nutr 52(8):1901–1911. doi:10.1007/s00394-012-0491-5

    Google Scholar 

  27. Humfrey CD (1998) Phytoestrogens and human health effects: weighing up the current evidence. Nat Toxins 6(2):51–59. doi:10.1002/(SICI)1522-7189(199804)6:2<51:AID-NT11>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  28. Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31(4):400–419. doi:10.1016/j.yfrne.2010.03.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Branca F, Lorenzetti S (2005) Health effects of phytoestrogens. Forum Nutr 57:100–111

    Article  PubMed  Google Scholar 

  30. Hallund J, Tetens I, Bugel S, Tholstrup T, Bruun JM (2008) The effect of a lignan complex isolated from flaxseed on inflammation markers in healthy postmenopausal women. Nutr Metab Cardiovasc Dis 18(7):497–502. doi:10.1016/j.numecd.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  31. Dodin S, Cunnane SC, Masse B, Lemay A, Jacques H, Asselin G, Tremblay-Mercier J, Marc I, Lamarche B, Legare F, Forest JC (2008) Flaxseed on cardiovascular disease markers in healthy menopausal women: a randomized, double-blind, placebo-controlled trial. Nutrition 24(1):23–30. doi:10.1016/j.nut.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  32. Pan A, Demark-Wahnefried W, Ye X, Yu Z, Li H, Qi Q, Sun J, Chen Y, Chen X, Liu Y, Lin X (2009) Effects of a flaxseed-derived lignan supplement on C-reactive protein, IL-6 and retinol-binding protein 4 in type 2 diabetic patients. Br J Nutr 101(8):1145–1149. doi:10.1017/S0007114508061527

    Article  CAS  PubMed  Google Scholar 

  33. Lampe JW, Atkinson C, Hullar MA (2006) Assessing exposure to lignans and their metabolites in humans. J AOAC Int 89(4):1174–1181

    CAS  PubMed  Google Scholar 

  34. Nicastro HL, Mondul AM, Rohrmann S, Platz EA (2013) Associations between urinary soy isoflavonoids and two inflammatory markers in adults in the United States in 2005–2008. Cancer Causes Control 24(6):1185–1196. doi:10.1007/s10552-013-0198-9

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mondul AM, Selvin E, De Marzo AM, Freedland SJ, Platz EA (2010) Statin drugs, serum cholesterol, and prostate-specific antigen in the National Health and Nutrition Examination Survey 2001–2004. Cancer Causes Control 21(5):671–678. doi:10.1007/s10552-009-9494-9

    Article  PubMed Central  PubMed  Google Scholar 

  36. Johnson CL, Paulose-Ram R, Ogden C (2013) National health and nutrition examination survey: analytic guidelines, 1999-2010. Vital Health Stat 2(161):1–16

    Google Scholar 

  37. Penalvo JL, Lopez-Romero P (2012) Urinary enterolignan concentrations are positively associated with serum HDL cholesterol and negatively associated with serum triglycerides in U.S. adults. J Nutr 142(4):751–756. doi:10.3945/jn.111.150516

    Article  CAS  PubMed  Google Scholar 

  38. Barnes S, Coward L, Kirk M, Sfakianos J (1998) HPLC-mass spectrometry analysis of isoflavones. Proc Soc Exp Biol Med 217(3):254–262

    Article  CAS  PubMed  Google Scholar 

  39. National Center for Health Statistics (2004) National Health and Nutrition Examination Survey. 2001–2002 Data documentation, codebook, and frequencies

  40. Valentin-Blasini L, Sadowski MA, Walden D, Caltabiano L, Needham LL, Barr DB (2005) Urinary phytoestrogen concentrations in the U.S. population (1999–2000). J Expo Anal Environ Epidemiol 15(6):509–523. doi:10.1038/sj.jea.7500429

    Article  CAS  PubMed  Google Scholar 

  41. Rybak ME, Sternberg MR, Pfeiffer CM (2013) Sociodemographic and lifestyle variables are compound- and class-specific correlates of urine phytoestrogen concentrations in the U.S. population. J Nutr 143(6):986S–994S. doi:10.3945/jn.112.172981

    Article  CAS  PubMed  Google Scholar 

  42. Kelley-Hedgepeth A, Lloyd-Jones DM, Colvin A, Matthews KA, Johnston J, Sowers MR, Sternfeld B, Pasternak RC, Chae CU (2008) Ethnic differences in C-reactive protein concentrations. Clin Chem 54(6):1027–1037. doi:10.1373/clinchem.2007.098996

    Article  CAS  PubMed  Google Scholar 

  43. Timpson NJ, Nordestgaard BG, Harbord RM, Zacho J, Frayling TM, Tybjaerg-Hansen A, Smith GD (2011) C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int J Obes (Lond) 35(2):300–308. doi:10.1038/ijo.2010.137

    Article  CAS  Google Scholar 

  44. Kurzer MS (2003) Phytoestrogen supplement use by women. J Nutr 133(6):1983S–1986S

    PubMed  Google Scholar 

  45. Davison S, Davis SR (2003) New markers for cardiovascular disease risk in women: impact of endogenous estrogen status and exogenous postmenopausal hormone therapy. J Clin Endocrinol Metab 88(6):2470–2478

    Article  CAS  PubMed  Google Scholar 

  46. Ridker PM, Hennekens CH, Rifai N, Buring JE, Manson JE (1999) Hormone replacement therapy and increased plasma concentration of C-reactive protein. Circulation 100(7):713–716

    Article  CAS  PubMed  Google Scholar 

  47. Frohlich M, Sund M, Lowel H, Imhof A, Hoffmeister A, Koenig W (2003) Independent association of various smoking characteristics with markers of systemic inflammation in men. Results from a representative sample of the general population (MONICA Augsburg Survey 1994/95). Eur Heart J 24(14):1365–1372

    Article  PubMed  Google Scholar 

  48. Alley DE, Seeman TE, Ki Kim J, Karlamangla A, Hu P, Crimmins EM (2006) Socioeconomic status and C-reactive protein levels in the US population: nHANES IV. Brain Behav Immun 20(5):498–504. doi:10.1016/j.bbi.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  49. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3):327–334

    Article  CAS  PubMed  Google Scholar 

  50. Panichi V, Migliori M, De Pietro S, Taccola D, Bianchi AM, Norpoth M, Metelli MR, Giovannini L, Tetta C, Palla R (2001) C reactive protein in patients with chronic renal diseases. Ren Fail 23(3–4):551–562

    Article  CAS  PubMed  Google Scholar 

  51. Hage FG (2013) C-reactive protein and hypertension. J Hum Hypertens. doi:10.1038/jhh.2013.111

    PubMed  Google Scholar 

  52. Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44(5–6):483–525. doi:10.1080/10408360701612942

    Article  CAS  PubMed  Google Scholar 

  53. Wang CS, Sun CF (2009) C-reactive protein and malignancy: clinico-pathological association and therapeutic implication. Chang Gung Med J 32(5):471–482

    PubMed  Google Scholar 

  54. Valentin-Blasini L, Blount BC, Caudill SP, Needham LL (2003) Urinary and serum concentrations of seven phytoestrogens in a human reference population subset. J Expo Anal Environ Epidemiol 13(4):276–282. doi:10.1038/sj.jea.7500278

    Article  CAS  PubMed  Google Scholar 

  55. Adolphe JL, Whiting SJ, Juurlink BH, Thorpe LU, Alcorn J (2010) Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr 103(7):929–938. doi:10.1017/S0007114509992753

    Article  CAS  PubMed  Google Scholar 

  56. van der Schouw YT, Sampson L, Willett WC, Rimm EB (2005) The usual intake of lignans but not that of isoflavones may be related to cardiovascular risk factors in U.S. men. J Nutr 135(2):260–266

    PubMed  Google Scholar 

  57. Gaskins AJ, Wilchesky M, Mumford SL, Whitcomb BW, Browne RW, Wactawski-Wende J, Perkins NJ, Schisterman EF (2012) Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: the BioCycle Study. Am J Epidemiol 175(5):423–431. doi:10.1093/aje/kwr343

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss Foundation for Nutrition Research (SFEFS; Zürich, Switzerland). We thank all individuals at the National Center for Health Statistics (NCHS) of the Centers for Disease Control and Prevention who were responsible for the planning and administering of NHANES.

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Eichholzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichholzer, M., Richard, A., Nicastro, H.L. et al. Urinary lignans and inflammatory markers in the US National Health and Nutrition Examination Survey (NHANES) 1999–2004 and 2005–2008. Cancer Causes Control 25, 395–403 (2014). https://doi.org/10.1007/s10552-014-0340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-014-0340-3

Keywords

Navigation