Skip to main content
Log in

Toenail iron, genetic determinants of iron status, and the risk of glioma

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

Iron is essential for oxygen transport and oxidative metabolism; however, elevated iron stores can trigger overproduction of reactive oxygen species and induce DNA damage. Little is known about the association between body iron stores and glioma risk. This study examined the associations of iron levels measured in toenails and genetic variants linked to body iron stores with risk of glioma in a clinic-based case–control study.

Methods

Samples were collected a median of 24 days following glioma diagnosis in the cases (10th–90th percentile, range: 10–44 days). Nail iron levels were measured in 300 cases and 300 controls using neutron activation analysis. A total of 24 genetic variants associated with iron status were genotyped in 622 cases and 628 controls. Logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CI) for glioma risk according to toenail iron and the examined genotypes.

Results

No association was observed between toenail iron and glioma risk when restricting to cases with nails collected within ~3 weeks of diagnosis (OR = 0.93; 95 % CI 0.46, 1.87 comparing those with high (≥14 μg/g) vs. low (<6 μg/g) iron levels). In contrast, an inverse association with increasing iron was observed after restricting to cases with a delay of 3 weeks or greater (OR = 0.42; 95 % CI 0.19, 0.95), reflecting potentially insidious effects of advancing disease on iron levels among the cases. No associations were observed for any of the examined genetic variants.

Conclusion

The results do not support a role for body iron stores as a determinant of glioma risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C et al (2011) Annual report to the nation on the status of cancer, 1975-2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736

    Article  PubMed  Google Scholar 

  2. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M et al (2007) Long-term survival with glioblastoma multiforme. Brain 130(Pt 10):2596–2606

    Article  PubMed  Google Scholar 

  3. Preston DL, Ron E, Yonehara S, Kobuke T, Fujii H, Kishikawa M et al (2002) Tumors of the nervous system and pituitary gland associated with atomic bomb radiation exposure. J Natl Cancer Inst 94(20):1555–1563

    Article  PubMed  CAS  Google Scholar 

  4. Ron E, Modan B, Boice JD Jr, Alfandary E, Stovall M, Chetrit A et al (1988) Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med 319(16):1033–1039

    Article  PubMed  CAS  Google Scholar 

  5. Gu J, Liu Y, Kyritsis AP, Bondy ML (2009) Molecular epidemiology of primary brain tumors. Neurotherapeutics 6(3):427–435

    Article  PubMed  CAS  Google Scholar 

  6. Skjorringe T, Moller LB, Moos T (2012) Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front Pharmacol 3:169

    Article  PubMed  Google Scholar 

  7. Navarro Silvera SA, Rohan TE (2007) Trace elements and cancer risk: a review of the epidemiologic evidence. Cancer Causes Control 18(1):7–27

    Article  PubMed  Google Scholar 

  8. Zacharski LR, Ornstein DL, Woloshin S, Schwartz LM (2000) Association of age, sex, and race with body iron stores in adults: analysis of NHANES III data. Am Heart J 140(1):98–104

    Article  PubMed  CAS  Google Scholar 

  9. Romeu M, Aranda N, Giralt M, Ribot B, Nogues MR, Arija V (2013) Diet, iron biomarkers and oxidative stress in a representative sample of Mediterranean population. Nutr J 12(1):102

    Article  PubMed  Google Scholar 

  10. McKinley BP, Michalek AM, Fenstermaker RA, Plunkett RJ (2000) The impact of age and sex on the incidence of glial tumors in New York state from 1976 to 1995. J Neurosurg 93(6):932–939

    Article  PubMed  CAS  Google Scholar 

  11. Toyokuni S (2009) Role of iron in carcinogenesis: cancer as a ferrotoxic disease. Cancer Sci 100(1):9–16

    Article  PubMed  CAS  Google Scholar 

  12. Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533(1–2):153–171

    Article  PubMed  CAS  Google Scholar 

  13. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711(1–2):193–201

    Article  PubMed  CAS  Google Scholar 

  14. Weinberg ED (1996) The role of iron in cancer. Eur J Cancer Prev 5(1):19–36

    Article  PubMed  CAS  Google Scholar 

  15. Chua AC, Graham RM, Trinder D, Olynyk JK (2007) The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 44(5–6):413–459

    Article  PubMed  CAS  Google Scholar 

  16. Kutalik Z, Benyamin B, Bergmann S, Mooser V, Waeber G, Montgomery GW et al (2011) Genome-wide association study identifies two loci strongly affecting transferrin glycosylation. Hum Mol Genet 20(18):3710–3717

    Article  PubMed  CAS  Google Scholar 

  17. McLaren CE, Garner CP, Constantine CC, McLachlan S, Vulpe CD, Snively BM et al (2011) Genome-wide association study identifies genetic loci associated with iron deficiency. PLoS ONE 6(3):e17390

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka T, Roy CN, Yao W, Matteini A, Semba RD, Arking D et al (2010) A genome-wide association analysis of serum iron concentrations. Blood 115(1):94–96

    Article  PubMed  CAS  Google Scholar 

  19. Soranzo N, Spector TD, Mangino M, Kuhnel B, Rendon A, Teumer A et al (2009) A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41(11):1182–1190

    Article  PubMed  CAS  Google Scholar 

  20. Benyamin B, McRae AF, Zhu G, Gordon S, Henders AK, Palotie A et al (2009) Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. Am J Hum Genet 84(1):60–65

    Article  PubMed  CAS  Google Scholar 

  21. Chambers JC, Zhang W, Li Y, Sehmi J, Wass MN, Zabaneh D et al (2009) Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat Genet 41(11):1170–1172

    Article  PubMed  CAS  Google Scholar 

  22. Ganesh SK, Zakai NA, van Rooij FJ, Soranzo N, Smith AV, Nalls MA et al (2009) Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nat Genet 41(11):1191–1198

    Article  PubMed  CAS  Google Scholar 

  23. Qiao L, Feng Y (2013) Intakes of heme iron and zinc and colorectal cancer incidence: a meta-analysis of prospective studies. Cancer Causes Control 24(6):1175–1183

    Article  PubMed  Google Scholar 

  24. Jakszyn P, Agudo A, Lujan-Barroso L, Bueno-de-Mesquita HB, Jenab M, Navarro C et al (2012) Dietary intake of heme iron and risk of gastric cancer in the European prospective investigation into cancer and nutrition study. Int J Cancer 130(11):2654–2663

    Article  PubMed  CAS  Google Scholar 

  25. Choi JY, Neuhouser ML, Barnett MJ, Hong CC, Kristal AR, Thornquist MD et al (2008) Iron intake, oxidative stress-related genes (MnSOD and MPO) and prostate cancer risk in CARET cohort. Carcinogenesis 29(5):964–970

    Article  PubMed  CAS  Google Scholar 

  26. Nelson RL, Davis FG, Sutter E, Sobin LH, Kikendall JW, Bowen P (1994) Body iron stores and risk of colonic neoplasia. J Natl Cancer Inst 86(6):455–460

    Article  PubMed  CAS  Google Scholar 

  27. Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliovaara M, Hakulinen T (1994) Body iron stores and risk of cancer. Int J Cancer 56(3):379–382

    Article  PubMed  CAS  Google Scholar 

  28. Cook MB, Kamangar F, Weinstein SJ, Albanes D, Virtamo J, Taylor PR et al (2012) Iron in relation to gastric cancer in the Alpha-tocopherol, Beta-carotene Cancer Prevention Study. Cancer Epidemiol Biomarkers Prev 21(11):2033–2042

    Article  PubMed  CAS  Google Scholar 

  29. Cross AJ, Sinha R, Wood RJ, Xue X, Huang WY, Yeager M et al (2011) Iron homeostasis and distal colorectal adenoma risk in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Prev Res (Phila) 4(9):1465–1475

    Article  CAS  Google Scholar 

  30. Cross AJ, Gunter MJ, Wood RJ, Pietinen P, Taylor PR, Virtamo J et al (2006) Iron and colorectal cancer risk in the alpha-tocopherol, beta-carotene cancer prevention study. Int J Cancer 118(12):3147–3152

    Article  PubMed  CAS  Google Scholar 

  31. O’Doherty MG, Abnet CC, Murray LJ, Woodside JV, Anderson LA, Brockman JD et al (2010) Iron intake and markers of iron status and risk of Barrett’s esophagus and esophageal adenocarcinoma. Cancer Causes Control 21(12):2269–2279

    Article  PubMed  Google Scholar 

  32. Vinceti M, Bassissi S, Malagoli C, Pellacani G, Alber D, Bergomi M et al (2005) Environmental exposure to trace elements and risk of cutaneous melanoma. J Expo Anal Environ Epidemiol 15(5):458–462

    Article  PubMed  CAS  Google Scholar 

  33. Corley DA, Kubo A, Levin TR, Habel L, Zhao W, Leighton P et al (2008) Iron intake and body iron stores as risk factors for Barrett’s esophagus: a community-based study. Am J Gastroenterol 103(12):2997–3004

    Article  PubMed  Google Scholar 

  34. Arslan M, Demir H, Arslan H, Gokalp AS, Demir C (2011) Trace elements, heavy metals and other biochemical parameters in malignant glioma patients. Asian Pac J Cancer Prev 12(2):447–451

    PubMed  Google Scholar 

  35. Little RB, Madden MH, Thompson RC, Olson JJ, Larocca RV, Pan E et al (2013) Anthropometric factors in relation to risk of glioma. Cancer Causes Control 24(5):1025–1031

    Article  PubMed  Google Scholar 

  36. Storey JD, Taylor JE, Siegmund D (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. JRSS-B 66:187–205

    Google Scholar 

  37. Cavill I, Jacobs A, Worwood M (1986) Diagnostic methods for iron status. Ann Clin Biochem 23(Pt 2):168–171

    PubMed  CAS  Google Scholar 

  38. Longnecker MP, Stampfer MJ, Morris JS, Spate V, Baskett C, Mason M et al (1993) A 1-y trial of the effect of high-selenium bread on selenium concentrations in blood and toenails. Am J Clin Nutr 57(3):408–413

    PubMed  CAS  Google Scholar 

  39. Maschio M (2012) Brain tumor-related epilepsy. Curr Neuropharmacol 10(2):124–133

    Article  PubMed  CAS  Google Scholar 

  40. Handoko KB, Souverein PC, van Staa TP, Meyboom RH, Leufkens HG, Egberts TC et al (2006) Risk of aplastic anemia in patients using antiepileptic drugs. Epilepsia 47(7):1232–1236

    Article  PubMed  Google Scholar 

  41. Recht L, Torres CO, Smith TW, Raso V, Griffin TW (1990) Transferrin receptor in normal and neoplastic brain tissue: implications for brain-tumor immunotherapy. J Neurosurg 72(6):941–945

    Article  PubMed  CAS  Google Scholar 

  42. Calzolari A, Larocca LM, Deaglio S, Finisguerra V, Boe A, Raggi C et al (2010) Transferrin receptor 2 is frequently and highly expressed in glioblastomas. Transl Oncol 3(2):123–134

    PubMed  Google Scholar 

  43. Hanninen MM, Haapasalo J, Haapasalo H, Fleming RE, Britton RS, Bacon BR et al (2009) Expression of iron-related genes in human brain and brain tumors. BMC Neurosci 10:36

    Article  PubMed  Google Scholar 

  44. Chen W, Zhao H, Li T, Yao H (2013) HFE gene C282Y variant is associated with colorectal cancer in Caucasians: a meta-analysis. Tumour Biol 34(4):2255–2259

    Article  PubMed  CAS  Google Scholar 

  45. Agudo A, Bonet C, Sala N, Munoz X, Aranda N, Fonseca A et al (2013) Hemochromatosis (HFE) gene mutations and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Carcinogenesis 34(6):1244–1250

    Article  PubMed  CAS  Google Scholar 

  46. Gannon PO, Medelci S, Le Page C, Beaulieu M, Provencher DM, Mes-Masson AM et al (2011) Impact of hemochromatosis gene (HFE) mutations on epithelial ovarian cancer risk and prognosis. Int J Cancer 128(10):2326–2334

    Article  PubMed  CAS  Google Scholar 

  47. Osborne NJ, Gurrin LC, Allen KJ, Constantine CC, Delatycki MB, McLaren CE et al (2010) HFE C282Y homozygotes are at increased risk of breast and colorectal cancer. Hepatology 51(4):1311–1318

    Article  PubMed  CAS  Google Scholar 

  48. McGlynn KA, Sakoda LC, Hu Y, Schoen RE, Bresalier RS, Yeager M et al (2005) Hemochromatosis gene mutations and distal adenomatous colorectal polyps. Cancer Epidemiol Biomarkers Prev 14(1):158–163

    PubMed  CAS  Google Scholar 

  49. Abraham BK, Justenhoven C, Pesch B, Harth V, Weirich G, Baisch C et al (2005) Investigation of genetic variants of genes of the hemochromatosis pathway and their role in breast cancer. Cancer Epidemiol Biomarkers Prev 14(5):1102–1107

    Article  PubMed  CAS  Google Scholar 

  50. Feder JN (1999) The hereditary hemochromatosis gene (HFE): a MHC class I-like gene that functions in the regulation of iron homeostasis. Immunol Res 20(2):175–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge our study participants and their families. We further wish to thank the clinicians and research staffs at participating medical centers for their contributions. In addition, we acknowledge Dr. Sajeel A. Chowdhary at the Florida Hospital Cancer Institute in Orlando, FL, as well as Harold Colbassani, MD; Dean Gobo, MD; and Christopher Mickler, DO, at Morton Plant Mease Healthcare and Baycare Health System in Clearwater, FL, for their efforts recruiting subjects to the study. The project was supported by the National Institutes of Health (R01CA116174) and institutional funding provided by the Moffitt Cancer Center (Tampa, FL) and the Vanderbilt-Ingram Comprehensive Cancer Center (Nashville, TN). Development of this manuscript was supported in part through a National Cancer Institute postdoctoral fellowship training grant (R25CA147832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Egan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anic, G.M., Madden, M.H., Thompson, R.C. et al. Toenail iron, genetic determinants of iron status, and the risk of glioma. Cancer Causes Control 24, 2051–2058 (2013). https://doi.org/10.1007/s10552-013-0281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-013-0281-2

Keywords

Navigation