Skip to main content

Advertisement

Log in

Methylation markers for prostate cancer prognosis: a systematic review

  • Review article
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

We conducted a systematic review to summarize current evidence on the prognostic utility of DNA methylation markers in prostate cancer and ascertain knowledge gaps to inform future research.

Methods

We identified relevant studies using combined key search against PubMed database. Inclusion criteria were studies of human subjects that examined the association between DNA methylation markers and prostate cancer disease outcomes. The methodological quality of each study was systematically evaluated. Findings were qualitatively summarized. Due to heterogeneity and concerns of internal validity, no meta-analysis was performed.

Results

Twenty studies were reviewed; sample size ranged from 35 to 605 men in the prognostic analyses. Sixteen studies examined methylation markers in prostate cancer tissue and four examined circulating DNA methylation markers. Of all genes reviewed, paired-like homeodomain transcription factor 2 (PITX2) methylation was examined in two more rigorously designed studies and was found to be associated with biochemical recurrence. Common limitations in current literature included small sample sizes, lack of adequate adjustment for established prognostic factors, and poor reporting quality.

Conclusion

Evidence on the prognostic utility of methylation markers in prostate cancer is inconclusive. Future research should ascertain large samples with adequate follow-up and include patients of racial/ethnic minority and those treated with modalities other than prostatectomy (e.g., using prostate cancer diagnostic biopsy as tissue source).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bertucci F, Birnbaum D (2009) Distant metastasis: not out of reach any more. J Biol 8:28

    Article  PubMed  Google Scholar 

  2. Welch HG, Albertsen PC (2009) Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J Natl Cancer Inst 101:1325–1329

    Article  PubMed  Google Scholar 

  3. Wilt TJ, MacDonald R, Rutks I, Shamliyan TA, Taylor BC, Kane RL (2008) Systematic review: comparative effectiveness and harms of treatments for clinically localized prostate cancer. Ann Intern Med 148:435–448

    Article  PubMed  Google Scholar 

  4. Epstein JI, Walsh PC, Carmichael M, Brendler CB (1994) Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271:368–374

    Article  CAS  PubMed  Google Scholar 

  5. Kattan MW, Eastham JA, Wheeler TM, Maru N, Scardino PT, Erbersdobler A et al (2003) Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol 170:1792–1797

    Article  PubMed  Google Scholar 

  6. Chun FK, Haese A, Ahyai SA, Walz J, Suardi N, Capitanio U et al (2008) Critical assessment of tools to predict clinically insignificant prostate cancer at radical prostatectomy in contemporary men. Cancer 113:701–709

    Article  PubMed  Google Scholar 

  7. Ploussard G, Epstein JI, Montironi R, Carroll PR, Wirth M, Grimm MO et al (2011) The contemporary concept of significant versus insignificant prostate cancer. Eur Urol 60:291–303

    Article  PubMed  Google Scholar 

  8. Jeldres C, Suardi N, Walz J, Hutterer GC, Ahyai S, Lattouf JB et al (2008) Validation of the contemporary Epstein criteria for insignificant prostate cancer in European men. Eur Urol 54:1306–1313

    Article  PubMed  Google Scholar 

  9. Lee MC, Dong F, Stephenson AJ, Jones JS, Magi-Galluzzi C, Klein EA (2010) The Epstein criteria predict for organ-confined but not insignificant disease and a high likelihood of cure at radical prostatectomy. Eur Urol 58:90–95

    Article  PubMed  Google Scholar 

  10. Lee SE, Kim DS, Lee WK, Park HZ, Lee CJ, Doo SH et al (2010) Application of the Epstein criteria for prediction of clinically insignificant prostate cancer in Korean men. BJU Int 105:1526–1530

    Article  PubMed  Google Scholar 

  11. Roehl KA, Han M, Ramos CG, Antenor JA, Catalona WJ (2004) Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results. J Urol 172:910–914

    Article  PubMed  Google Scholar 

  12. Sutcliffe P, Hummel S, Simpson E, Young T, Rees A, Wilkinson A et al (2009) Use of classical and novel biomarkers as prognostic risk factors for localised prostate cancer: a systematic review. Health Technol Assess 13:1–219

    Google Scholar 

  13. Cooper CS, Foster CS (2009) Concepts of epigenetics in prostate cancer development. Br J Cancer 100:240–245

    Article  CAS  PubMed  Google Scholar 

  14. Newell-Price J, Clark AJ, King P (2000) DNA methylation and silencing of gene expression. Trends Endocrinol Metab 11:142–148

    Article  CAS  PubMed  Google Scholar 

  15. Shames DS, Minna JD, Gazdar AF (2007) DNA methylation in health, disease, and cancer. Curr Mol Med 7:85–102

    Article  CAS  PubMed  Google Scholar 

  16. Meiers I, Shanks JH, Bostwick DG (2007) Glutathione S-transferase pi (GSTP1) hypermethylation in prostate cancer: review 2007. Pathology 39:299–304

    Article  CAS  PubMed  Google Scholar 

  17. Li LC (2007) Epigenetics of prostate cancer. Front Biosci 12:3377–3397

    Article  CAS  PubMed  Google Scholar 

  18. Goering W, Kloth M, Schulz WA (2012) DNA methylation changes in prostate cancer. Methods Mol Biol 863:47–66

    Article  CAS  PubMed  Google Scholar 

  19. Bastian PJ, Ellinger J, Wellmann A, Wernert N, Heukamp LC, Müller SC et al (2005) Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11:4097–4106

    Article  CAS  PubMed  Google Scholar 

  20. Yoon HY, Kim SK, Kim YW, Kang HW, Lee SC, Ryu KH et al (2012) Combined hypermethylation of APC and GSTP1 as a molecular marker for prostate cancer: quantitative pyrosequencing analysis. J Biomol Screen 17:987–992

    Article  PubMed  Google Scholar 

  21. Phe V, Cussenot O, Roupret M (2010) Methylated genes as potential biomarkers in prostate cancer. BJU Int 105:1364–1370

    Article  CAS  PubMed  Google Scholar 

  22. Li Q, Chen H (2011) Epigenetic modifications of metastasis suppressor genes in colon cancer metastasis. Epigenetics 6:849–852

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Shang Y (2012) Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res 319:160–169

    Article  PubMed  Google Scholar 

  24. Hayden JA, Côté P, Bombardier C (2006) Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med 144:427–437

    Article  PubMed  Google Scholar 

  25. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM, Statistics Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics (2006) Reporting recommendations for tumor Marker prognostic studies (remark). Exp Oncol 28:99–105

    CAS  PubMed  Google Scholar 

  26. Cookson MS, Aus G, Burnett AL, Canby-Hagino ED, D’Amico AV, Dmochowski RR et al (2007) Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol 177:540–545

    Article  CAS  PubMed  Google Scholar 

  27. Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOGASTRO phoenix consensus conference. Int J Radiat Oncol Biol Phys 65:965–974

    Article  PubMed  Google Scholar 

  28. American Society for Therapeutic Radiology and Oncology Consensus Panel (1997) Consensus statement: guidelines for PSA following radiation therapy. Int J Radiat Oncol Biol Phys 37:1035–1041

    Google Scholar 

  29. Bostwick DG, Grignon DJ, Hammond ME, Amin MB, Cohen M, Crawford D et al (2000) Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124:995–1000

    CAS  PubMed  Google Scholar 

  30. Bastian PJ, Palapattu GS, Yegnasubramanian S, Rogers CG, Lin X, Mangold LA et al (2008) CpG island hypermethylation profile in the serum of men with clinically localized and hormone refractory metastatic prostate cancer. J Urol 179:529–534 (discussion 534–535)

    Article  CAS  PubMed  Google Scholar 

  31. Bastian PJ, Palapattu GS, Lin X, Yegnasubramanian S, Mangold LA, Trock B et al (2005) Preoperative serum DNA GSTP1 CpG island hypermethylation and the risk of early prostate-specific antigen recurrence following radical prostatectomy. Clin Cancer Res 11:4037–4043

    Article  CAS  PubMed  Google Scholar 

  32. Liu JW, Nagpal JK, Jeronimo C, Lee JE, Henrique R, Kim MS et al (2008) Hypermethylation of MCAM gene is associated with advanced tumor stage in prostate cancer. Prostate 68:418–426

    Article  CAS  PubMed  Google Scholar 

  33. Liu JW, Nagpal JK, Sun W, Lee J, Kim MS, Ostrow KL et al (2008) ssDNA-binding protein 2 is frequently hypermethylated and suppresses cell growth in human prostate cancer. Clin Cancer Res 14:3754–3760

    Article  CAS  PubMed  Google Scholar 

  34. Liu L, Kron KJ, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J et al (2011) Association of tissue promoter methylation levels of APC, TGFbeta2, HOXD3 and RASSF1A with prostate cancer progression. Int J Cancer 129:2454–2462

    Article  CAS  PubMed  Google Scholar 

  35. Kron KJ, Liu L, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J et al (2010) DNA methylation of HOXD3 as a marker of prostate cancer progression. Lab Invest 90:1060–1067

    Article  CAS  PubMed  Google Scholar 

  36. Alumkal JJ, Zhang Z, Humphreys EB, Bennett C, Mangold LA, Carducci MA et al (2008) Effect of DNA methylation on identification of aggressive prostate cancer. Urology 72:1234–1239

    Article  PubMed  Google Scholar 

  37. Ellinger J, Bastian PJ, Jurgan T, Biermann K, Kahl P, Heukamp LC et al (2008) CpG island hypermethylation at multiple gene sites in diagnosis and prognosis of prostate cancer. Urology 71:161–167

    Article  PubMed  Google Scholar 

  38. Henrique R, Ribeiro FR, Fonseca D, Hoque MO, Carvalho AL, Costa VL et al (2007) High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res 13:6122–6129

    Article  CAS  PubMed  Google Scholar 

  39. Okegawa T, Nutahara K, Higashihara E (2010) Association of circulating tumor cells with tumor-related methylated DNA in patients with hormone-refractory prostate cancer. Int J Urol 17:466–475

    Article  CAS  PubMed  Google Scholar 

  40. Woodson K, O’Reilly KJ, Ward DE, Walter J, Hanson J, Walk EL et al (2006) CD44 and PTGS2 methylation are independent prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease. Epigenetics 1:183–186

    Article  PubMed  Google Scholar 

  41. Pierconti F, Martini M, Pinto F, Cenci T, Capodimonti S, Calarco A et al (2011) Epigenetic silencing of SOCS3 identifies a subset of prostate cancer with an aggressive behavior. Prostate 71:318–325

    Article  CAS  PubMed  Google Scholar 

  42. Rosenbaum E, Hoque MO, Cohen Y, Zahurak M, Eisenberger MA, Epstein JI et al (2005) Promoter hypermethylation as an independent prognostic factor for relapse in patients with prostate cancer following radical prostatectomy. Clin Cancer Res 11:8321–8325

    Article  CAS  PubMed  Google Scholar 

  43. Vanaja DK, Ehrich M, Van den Boom D, Cheville JC, Karnes RJ, Tindall DJ et al (2009) Hypermethylation of genes for diagnosis and risk stratification of prostate cancer. Cancer Invest 27:549–560

    Article  CAS  PubMed  Google Scholar 

  44. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986

    Article  CAS  PubMed  Google Scholar 

  45. Bañez LL, Sun L, van Leenders GJ, Wheeler TM, Bangma CH, Freedland SJ et al (2010) Multicenter clinical validation of PITX2 methylation as a prostate specific antigen recurrence predictor in patients with post-radical prostatectomy prostate cancer. J Urol 184:149–156

    Article  PubMed  Google Scholar 

  46. Tew KD, Manevich Y, Grek C, Xiong Y, Uys J, Townsend DM (2011) The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med 51:299–313

    Article  CAS  PubMed  Google Scholar 

  47. Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O et al (2009) Promoter methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J Clin Oncol 27:3161–3168

    Article  CAS  PubMed  Google Scholar 

  48. Aoki K, Taketo MM (2007) Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 120:3327–3335

    Article  CAS  PubMed  Google Scholar 

  49. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460

    Article  CAS  PubMed  Google Scholar 

  50. RARB retinoic acid receptor, beta [Homo sapiens] updated on 6 Sep 2012 www.ncbi.nlm.nih.gov/gene/5915

  51. Alvarez S, Germain P, Alvarez R, Rodriguez-Barrios F, Gronemeyer H, de Lera AR (2007) Structure, function and modulation of retinoic acid receptor beta, a tumor suppressor. Int J Biochem Cell Biol 39:1406–1415

    Article  CAS  PubMed  Google Scholar 

  52. RASSF1 Ras association (RalGDS/AF-6) domain family member 1 [Homo sapiens] updated on 9 Sep 2012 http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=11186

  53. Donninger H, Vos MD, Clark GJ (1007) The RASSF1A tumor suppressor. J Cell Sci 120:3163–3172

    Article  Google Scholar 

  54. PITX2 paired-like homeodomain 2 [Homo sapiens] updated on 9 Sep 2012 http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5308

  55. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP (2001) Methylation profiling in acute myeloid leukemia. Blood 97:2823–2829

    Article  CAS  PubMed  Google Scholar 

  56. Anglim PP, Galler JS, Koss MN, Hagen JA, Turla S, Campan M et al (2008) Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer. Mol Cancer 7:62

    Article  PubMed  Google Scholar 

  57. Harbeck N, Nimmrich I, Hartmann A, Ross JS, Cufer T, Grützmann R et al (2008) Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol 26:5036–5042

    Article  CAS  PubMed  Google Scholar 

  58. Weiss G, Cottrell S, Distler J, Schatz P, Kristiansen G, Ittmann M et al (2009) DNA methylation of the PITX2 gene promoter region is a strong independent prognostic 33 marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol 181:1678–1685

    Article  CAS  PubMed  Google Scholar 

  59. Rizzo MT (2011) Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 412:671–687

    Article  CAS  PubMed  Google Scholar 

  60. CCND2 cyclin D2 [Homo sapiens] updated on 6 Sep 2012 http://www.ncbi.nlm.nih.gov/gene/894

  61. EDNRB. Revised August 2012 http://ghr.nlm.nih.gov/gene/EDNRB

  62. Mazzuca MQ, Khalil RA (2012) Vascular endothelin receptor type B: structure, function and dysregulation in vascular disease. Biochem Pharmacol 84:147–162

    Article  CAS  PubMed  Google Scholar 

  63. Cottrell S, Jung K, Kristiansen G, Eltze E, Semjonow A, Ittmann M et al (2007) Discovery and validation of 3 novel DNA methylation markers of prostate cancer prognosis. J Urol 177:1753–1758

    Article  CAS  PubMed  Google Scholar 

  64. Alix-Panabières C, Schwarzenbach H, Pantel K (2012) Circulating tumor cells and circulating tumor DNA. Annu Rev Med 63:199–215

    Article  PubMed  Google Scholar 

  65. Schwarzenbach H, Hoon DS, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437

    Article  CAS  PubMed  Google Scholar 

  66. Rouprêt M, Hupertan V, Catto JW, Yates DR, Rehman I, Proctor LM et al (2008) Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer 122:952–956

    Article  PubMed  Google Scholar 

  67. Kwabi-Addo B, Wang S, Chung W, Jelinek J, Patierno SR, Wang BD et al (2010) Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin Cancer Res 16:3539–3547

    Article  CAS  PubMed  Google Scholar 

  68. Enokida H, Shiina H, Urakami S, Igawa M, Ogishima T, Pookot D et al (2005) Ethnic group-related differences in CpG hypermethylation of the GSTP1 gene promoter among African-American, Caucasian and Asian patients with prostate cancer. Int J Cancer 116:174–181

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Chao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, C., Chi, M., Preciado, M. et al. Methylation markers for prostate cancer prognosis: a systematic review. Cancer Causes Control 24, 1615–1641 (2013). https://doi.org/10.1007/s10552-013-0249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-013-0249-2

Keywords

Navigation