Skip to main content

Advertisement

Log in

Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Background

Gene polymorphisms in the one-carbon metabolism pathway could contribute to arsenic methylation capability through plasma folate and homocysteine metabolism, thereby increasing the susceptibility to urothelial carcinoma (UC) risk.

Objectives

The goal of our study was to evaluate the roles of gene polymorphisms in the one-carbon metabolism pathway in the carcinogenesis of UC.

Methods

A hospital-based case–controlled study was conducted. The urinary arsenic profile was examined using high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Folate levels were measured using a competitive immunoassay kit. Genotyping was conducted using polymerase chain reaction-restriction fragment length polymorphism technique.

Results

Patients with UC had higher urinary total arsenic, inorganic arsenic percentage (InAs%) and monomethylarsenic acid percentage (MMA%), and lower dimethylarsenic acid percentage (DMA%), plasma folate and homocysteine levels than controls. The correlations between folate and DMA%, and folate and homocysteine, were significant according to Pearson’s correlation coefficients. Subjects carrying the 5,10-methylenetetrahydrofolate reductase (MTHFR) CT or TT genotype had a lower DMA% and lower folate levels than those carrying the CC genotype. Participants with the methionine synthase (MS) AA genotype had higher homocysteine levels than those with the AG or GG genotype. However, neither MTHFR nor MS gene polymorphisms were associated with UC risk.

Conclusions

Environmental factors played a more important role in UC carcinogenesis than MTHFR or MS gene polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chiou HY, Chiou ST, Hsu YH et al (2001) Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8, 102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol 153:411–418

    Article  CAS  PubMed  Google Scholar 

  2. Steinmaus C, Yuan Y, Bates MN, Smith AH (2003) Case–control study of bladder cancer and drinking water arsenic in the western United States. Am J Epidemiol 158:1193–1201

    Article  PubMed  Google Scholar 

  3. Marafante E, Vahter M (1984) The effect of methyltransferase inhibition on the metabolism of [74As]arsenite in mice and rabbits. Chem Biol Interact 50:49–57

    Article  CAS  PubMed  Google Scholar 

  4. Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ (2002) The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect 110:767–771

    Article  CAS  PubMed  Google Scholar 

  5. Wang TC, Jan KY, Wang AS, Gurr JR (2007) Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells. Mutat Res 615:75–86

    CAS  PubMed  Google Scholar 

  6. Ahsan H, Chen Y, Kibriya MG et al (2007) Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol Biomarkers Prev 16:1270–1278

    Article  CAS  PubMed  Google Scholar 

  7. Chen YC, Su HJ, Guo YL et al (2003) Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control 14:303–310

    Article  PubMed  Google Scholar 

  8. Huang YK, Huang YL, Hsueh YM et al (2008) Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Control 19:829–839

    Article  PubMed  Google Scholar 

  9. Pu YS, Yang SM, Huang YK et al (2007) Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol Appl Pharmacol 218:99–106

    Article  CAS  PubMed  Google Scholar 

  10. Tseng CH, Huang YK, Huang YL et al (2005) Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Appl Pharmacol 206:299–308

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Ekstrom EC, Goessler W et al (2008) Nutritional status has marginal influence on the metabolism of inorganic arsenic in pregnant Bangladeshi women. Environ Health Perspect 116:315–321

    Article  CAS  PubMed  Google Scholar 

  12. Pilsner JR, Liu X, Ahsan H et al (2009) Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117:254–260

    CAS  PubMed  Google Scholar 

  13. Gamble MV, Liu X, Ahsan H et al (2005) Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ Health Perspect 113:1683–1688

    Article  CAS  PubMed  Google Scholar 

  14. Huang YK, Pu YS, Chung CJ et al (2008) Plasma folate level, urinary arsenic methylation profiles, and urothelial carcinoma susceptibility. Food Chem Toxicol 46:929–938

    Article  CAS  PubMed  Google Scholar 

  15. Dekou V, Whincup P, Papacosta O et al (2001) The effect of the C677T and A1298C polymorphisms in the methylenetetrahydrofolate reductase gene on homocysteine levels in elderly men and women from the British regional heart study. Atherosclerosis 154:659–666

    Article  CAS  PubMed  Google Scholar 

  16. Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  17. Botto LD, Yang Q (2000) 5, 10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151:862–877

    CAS  PubMed  Google Scholar 

  18. Maron BA, Loscalzo J (2006) Homocysteine. Clin Lab Med 26:591–609

    Article  PubMed  Google Scholar 

  19. Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  20. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Stampfer MJ, Ma J et al (2001) Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis 154:667–672

    Article  CAS  PubMed  Google Scholar 

  22. Engstrom KS, Broberg K, Concha G, Nermell B, Warholm M, Vahter M (2007) Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect 115:599–605

    Article  Google Scholar 

  23. Lindberg AL, Kumar R, Goessler W et al (2007) Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect 115:1081–1086

    Article  CAS  PubMed  Google Scholar 

  24. Steinmaus C, Moore LE, Shipp M et al (2007) Genetic Polymorphisms in MTHFR 677 and 1298, GSTM1 and T1, and Metabolism of Arsenic. J Toxicol Environ Health, Part A 70:159–170

    Article  CAS  Google Scholar 

  25. Hsueh YM, Huang YL, Huang CC et al (1998) Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J Toxicol Environ Health 54:431–444

    Article  CAS  Google Scholar 

  26. Chen YC, Amarasiriwardena CJ, Hsueh YM, Christiani DC (2002) Stability of arsenic species and insoluble arsenic in human urine. Cancer Epidemiol Biomarkers Prev 11:1427–1433

    CAS  PubMed  Google Scholar 

  27. Chan EC, Chang PY, Wu TL, Wu JT (2005) Enzymatic assay of homocysteine on microtiter plates or a TECAN analyzer using crude lysate containing recombinant methionine gamma-lyase. Ann Clin Lab Sci 35:155–160

    CAS  PubMed  Google Scholar 

  28. Harmon DL, Shields DC, Woodside JV et al (1999) Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 17:298–309

    Article  CAS  PubMed  Google Scholar 

  29. Hosmer DW, Lemeshow S (1992) Confidence interval estimation of interaction. Epidemiology 3:452–456

    Article  CAS  PubMed  Google Scholar 

  30. Tseng CH (2009) A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol 235:338–350

    Article  CAS  PubMed  Google Scholar 

  31. Hsueh YM, Ko YF, Huang YK et al (2003) Determinants of inorganic arsenic methylation capability among residents of the Lanyang Basin, Taiwan: arsenic and selenium exposure and alcohol consumption. Toxicol Lett 137:49–63

    Article  CAS  PubMed  Google Scholar 

  32. Chung CJ, Hsueh YM, Bai CH et al (2009) Polymorphisms in arsenic metabolism genes, urinary arsenic methylation profile and cancer. Cancer Causes Control 20:1653–1661

    Article  PubMed  Google Scholar 

  33. Stanger O, Semmelrock HJ, Wonisch W, Bos U, Pabst E, Wascher TC (2002) Effects of folate treatment and homocysteine lowering on resistance vessel reactivity in atherosclerotic subjects. J Pharmacol Exp Ther 303:158–162

    Article  CAS  PubMed  Google Scholar 

  34. Suh JR, Herbig AK, Stover PJ (2001) New perspectives on folate catabolism. Annu Rev Nutr 21:255–282

    Article  CAS  PubMed  Google Scholar 

  35. Gamble MV, Liu X, Ahsan H et al (2006) Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid-supplementation trial in Bangladesh. Am J Clin Nutr 84:1093–1101

    CAS  PubMed  Google Scholar 

  36. Gamble MV, Liu X, Slavkovich V et al (2007) Folic acid supplementation lowers blood arsenic. Am J Clin Nutr 86:1202–1209

    CAS  PubMed  Google Scholar 

  37. Hall M, Gamble M, Slavkovich V et al (2007) Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ Health Perspect 115:1503–1509

    CAS  PubMed  Google Scholar 

  38. Pilsner JR, Liu X, Ahsan H et al (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86:1179–1186

    CAS  PubMed  Google Scholar 

  39. Wu MM, Chiou HY, Hsueh YM et al (2006) Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol Appl Pharmacol 216:168–175

    Article  CAS  PubMed  Google Scholar 

  40. Chou YC, Wu MH, Yu JC et al (2006) Genetic polymorphisms of the methylenetetrahydrofolate reductase gene, plasma folate levels and breast cancer susceptibility: a case–control study in Taiwan. Carcinogenesis 27:2295–2300

    Article  CAS  PubMed  Google Scholar 

  41. Wilcken B, Bamforth F, Li Z et al (2003) Geographical and ethnic variation of the 677C>T allele of 5, 10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet 40:619–625

    Article  CAS  PubMed  Google Scholar 

  42. Dekou V, Gudnason V, Hawe E, Miller GJ, Stansbie D, Humphries SE (2001) Gene-environment and gene-gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men. Thromb Haemost 85:67–74

    CAS  PubMed  Google Scholar 

  43. Matsuo K, Suzuki R, Hamajima N et al (2001) Association between polymorphisms of folate- and methionine-metabolizing enzymes and susceptibility to malignant lymphoma. Blood 97:3205–3209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the National Science Council of the ROC (NSC 86-2314-B-038-038, NSC 87-2314-B-038-029, NSC-88-2314-B-038-112, NSC-89-2314-B038-049, SC-89-2320-B038-013, NSC-90-2320-B-038-021, NSC91-3112-B-038-0019, NSC92-3112-B-038-001, NSC93-3112-B-038-001, NSC94-2314-B-038-023, NSC-95-2314-B-038-007, NSC-96-2314-B038-003, NSC 97-2314-B-038 -015 -MY3 (1-3), and NSC 97-2314-B-038 -015 -MY3 (2, 3)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Mei Hsueh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, CJ., Pu, YS., Su, CT. et al. Polymorphisms in one-carbon metabolism pathway genes, urinary arsenic profile, and urothelial carcinoma. Cancer Causes Control 21, 1605–1613 (2010). https://doi.org/10.1007/s10552-010-9589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-010-9589-3

Keywords

Navigation