Skip to main content
Log in

Variants in hormone biosynthesis genes and risk of endometrial cancer

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

We investigated the risk associated with variants in three genes involved in estrogen biosynthesis, CYP11A1, CYP17A1, and CYP19A1, in the population-based case–control study of Estrogen, Diet, Genetics, and Endometrial Cancer. This study was conducted in New Jersey in 2001–2006 with 417 cases and 402 controls. For CYP11A1, there was no association between the number of [TTTTA] n repeats (D15S520) and risk. For CYP17A1, risk was somewhat lower among women with the C/C genotype at T-34C (rs743572) (adjusted OR = 0.65, 95% CI 0.41–1.02). For CYP19A1, risk was lower among women homozygous for the 3-bp deletion (rs11575899) in exon 4 (adjusted OR = 0.44, 95% CI 0.26–0.76), while the number of [TTTA] n repeats was not significantly related to risk: the adjusted OR for n = 7/7 repeats versus n > 7/>7 repeats was 0.81 (95% CI 0.54–1.23). In stratified analyses, results for CYP19A1 were stronger among women with higher (≥27.4) body mass index: for the homozygous deletion, OR = 0.30 (95% CI 0.15–0.62); for the n = 7/7 genotype, OR = 0.49 (95% CI 0.26–0.93). The interaction between the n = 7/7 genotype and BMI was statistically significant (p = 0.01). The insertion/deletion variant in CYP19A1 appears to be related to risk of endometrial cancer; risk associated with variants in this gene may vary according to BMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. ACS (2007) Cancer facts and figures (2007) American Cancer Society, Atlanta

    Google Scholar 

  2. Sherman ME (2000) Theories of endometrial carcinogenesis: a multidisciplinary approach. Mod Pathol 13:295–308

    Article  PubMed  CAS  Google Scholar 

  3. Key TJ, Pike MC (1988) The dose-effect relationship between ‘unopposed’ oestrogens and endometrial mitotic rate: its central role in explaining and predicting endometrial cancer risk. Br J Cancer 57:205–212

    PubMed  CAS  Google Scholar 

  4. Hartz AJ, Barboriak PN, Wong A, Katayama KP, Rimm AA (1979) The association of obesity with infertility and related menstrual abnormalities in women. Int J Obes 3:57–73

    PubMed  CAS  Google Scholar 

  5. Jain A, Polotsky AJ, Rochester D et al (2007) Pulsatile Luteinizing hormone amplitude and progesterone metabolite excretion are reduced in obese women. J Clin Endocrinol Metab 92:2468–2473

    Article  PubMed  CAS  Google Scholar 

  6. Kaaks R, Lukanova A, Kurzer MS (2002) Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev 11:1531–1543

    PubMed  CAS  Google Scholar 

  7. Kirschner MA, Schneider G, Ertel NH, Worton E (1982) Obesity, androgens, estrogens, and cancer risk. Cancer Res 42:3281s–3285s

    PubMed  CAS  Google Scholar 

  8. MacDonald PC, Edman CD, Hemsell DL, Porter JC, Siiteri PK (1978) Effect of obesity on conversion of plasma androstenedione to estrone in postmenopausal women with and without endometrial cancer. Am J Obstet Gynecol 130:448–455

    PubMed  CAS  Google Scholar 

  9. Siiteri PK (1981) Extraglandular oestrogen formation and serum binding of oestradiol: relationship to cancer. J Endocrinol 89(Suppl):119P–129P

    PubMed  Google Scholar 

  10. Lacey JV Jr, Leitzmann MF, Chang SC et al (2007) Endometrial cancer and menopausal hormone therapy in the National Institutes of Health-AARP Diet and Health Study cohort. Cancer 109:1303–1311

    Article  PubMed  CAS  Google Scholar 

  11. Strom BL, Schinnar R, Weber AL et al (2006) Case–control study of postmenopausal hormone replacement therapy and endometrial cancer. Am J Epidemiol 164:775–786

    Article  PubMed  Google Scholar 

  12. Potischman N, Hoover RN, Brinton LA et al (1996) Case–control study of endogenous steroid hormones and endometrial cancer. J Natl Cancer Inst 88:1127–1135

    Article  PubMed  CAS  Google Scholar 

  13. Lukanova A, Lundin E, Micheli A et al (2004) Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women. Int J Cancer 108:425–432

    Article  PubMed  CAS  Google Scholar 

  14. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591

    Article  PubMed  CAS  Google Scholar 

  15. Healey CS, Dunning AM, Durocher F et al (2000) Polymorphisms in the human aromatase cytochrome P450 gene (CYP19) and breast cancer risk. Carcinogenesis 21:189–193

    Article  PubMed  CAS  Google Scholar 

  16. Baxter SW, Choong DY, Eccles DM, Campbell IG (2001) Polymorphic variation in CYP19 and the risk of breast cancer. Carcinogenesis 22:347–349

    Article  PubMed  CAS  Google Scholar 

  17. Ronaghi M (2003) Pyrosequencing for SNP genotyping. Methods Mol Biol 212:189–195

    PubMed  CAS  Google Scholar 

  18. Franchina M, Kadin ME, Abraham LJ (2005) Polymorphism of the CD30 promoter microsatellite repressive element is associated with development of primary cutaneous lymphoproliferative disorders. Cancer Epidemiol Biomarkers Prev 14:1322–1325

    Article  PubMed  CAS  Google Scholar 

  19. Harrell FE (2001) Regression modeling strategies with applications to linear models, logistic regression, and survival analysis. Springer, New York

    Google Scholar 

  20. Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  Google Scholar 

  21. Olson SH, Bandera EV, Orlow I (2007) Variants in estrogen biosynthesis genes, sex steroid hormone levels, and endometrial cancer: a HuGE review. Am J Epidemiol 165:235–245

    Article  PubMed  Google Scholar 

  22. Johnson MM, Houck J, Chen C (2005) Screening for deleterious nonsynonymous single-nucleotide polymorphisms in genes involved in steroid hormone metabolism and response. Cancer Epidemiol Biomarkers Prev 14:1326–1329

    Article  PubMed  CAS  Google Scholar 

  23. Gaudet MM, Lacey JV Jr., Lissowska J et al (2008) Genetic variation in CYP17 and endometrial cancer risk. Hum Genet 123:155–162

    Article  PubMed  CAS  Google Scholar 

  24. Haiman CA, Hankinson SE, Colditz GA, Hunter DJ, De Vivo I (2001) A polymorphism in CYP17 and endometrial cancer risk. Cancer Res 61:3955–3960

    PubMed  CAS  Google Scholar 

  25. Carey AH, Waterworth D, Patel K et al (1994) Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 3:1873–1876

    Article  PubMed  CAS  Google Scholar 

  26. Nedelcheva Kristensen V, Haraldsen EK, Anderson KB et al (1999) CYP17 and breast cancer risk: the polymorphism in the 5′ flanking area of the gene does not influence binding to Sp-1. Cancer Res 59:2825–2828

    PubMed  CAS  Google Scholar 

  27. Jasienska G, Kapiszewska M, Ellison PT et al (2006) CYP17 genotypes differ in salivary 17-beta estradiol levels: a study based on hormonal profiles from entire menstrual cycles. Cancer Epidemiol Biomarkers Prev 15:2131–2135

    Article  PubMed  CAS  Google Scholar 

  28. Onland-Moret NC, van Gils CH, Roest M, Grobbee DE, Peeters PH (2005) CYP17, urinary sex steroid levels and breast cancer risk in postmenopausal women. Cancer Epidemiol Biomarkers Prev 14:815–820

    Article  PubMed  CAS  Google Scholar 

  29. Daneshmand S, Weitsman SR, Navab A, Jakimiuk AJ, Magoffin DA (2002) Overexpression of theca-cell messenger RNA in polycystic ovary syndrome does not correlate with polymorphisms in the cholesterol side-chain cleavage and 17alpha-hydroxylase/C(17–20) lyase promoters. Fertil Steril 77:274–280

    Article  PubMed  Google Scholar 

  30. Loukola A, Chadha M, Penn SG et al (2004) Comprehensive evaluation of the association between prostate cancer and genotypes/haplotypes in CYP17A1, CYP3A4, and SRD5A2. Eur J Hum Genet 12:321–322

    Article  PubMed  CAS  Google Scholar 

  31. Skibola CF, Bracci PM, Paynter RA et al (2005) Polymorphisms and haplotypes in the cytochrome P450 17A1, prolactin, and catechol-O-methyltransferase genes and non-Hodgkin lymphoma risk. Cancer Epidemiol Biomarkers Prev 14:2391–2401

    Article  PubMed  CAS  Google Scholar 

  32. Paynter RA, Hankinson SE, Colditz GA et al (2005) CYP19 (aromatase) haplotypes and endometrial cancer risk. Int J Cancer 116:267–274

    Article  PubMed  CAS  Google Scholar 

  33. Berstein LM, Imyanitov EN, Kovalevskij AJ et al (2004) CYP17 and CYP19 genetic polymorphisms in endometrial cancer: association with intratumoral aromatase activity. Cancer Lett 207:191–196

    Article  PubMed  CAS  Google Scholar 

  34. Tao MH, Cai Q, Zhang ZF et al (2007) Polymorphisms in the CYP19A1 (Aromatase) gene and endometrial cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev 16:943–949

    Article  PubMed  CAS  Google Scholar 

  35. Haiman CA, Stram DO, Pike MC et al (2003) A comprehensive haplotype analysis of CYP19 and breast cancer risk: the Multiethnic Cohort. Hum Mol Genet 12:2679–2692

    Article  PubMed  CAS  Google Scholar 

  36. Long JR, Shu XO, Cai Q et al (2007) CYP19A1 genetic polymorphisms may be associated with obesity-related phenotypes in Chinese women. Int J Obes (Lond) 31:418–423

    Article  CAS  Google Scholar 

  37. Haiman CA, Dossus L, Setiawan VW et al (2007) Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Res 67:1893–1897

    Article  PubMed  CAS  Google Scholar 

  38. www.hapmap.org, Accessed November 16 2007

  39. Niu X, Burger S, Van loon S, Kohler B (2007) Cancer incidence and mortality in New Jersey 2000–2004. Cancer Epidemiology Services, New Jersey Department of Health and Senior Services

  40. Ries L, Kosary C, Hankey B et al (1997) SEER cancer statistics review, 1973–1994. NIH Pub. No. 97-2789, National Cancer Institute, Bethesda

  41. Parazzini F, Negri E, La Vecchia C et al (1998) Role of reproductive factors on the risk of endometrial cancer. Int J Cancer 76:784–786

    Article  PubMed  CAS  Google Scholar 

  42. Weiderpass E, Adami HO, Baron JA et al (1999) Use of oral contraceptives and endometrial cancer risk (Sweden). Cancer Causes Control 10:277–284

    Article  PubMed  CAS  Google Scholar 

  43. Weiderpass E, Baron JA (2001) Cigarette smoking, alcohol consumption, and endometrial cancer risk: a population-based study in Sweden. Cancer Causes Control 12:239–247

    Article  PubMed  CAS  Google Scholar 

  44. Rebbeck TR, Troxel AB, Wang Y et al (2006) Estrogen sulfation genes, hormone replacement therapy, and endometrial cancer risk. J Natl Cancer Inst 98:1311–1320

    Article  PubMed  CAS  Google Scholar 

  45. Flegal KM, Carroll MD, Ogden CL, Johnson CL (2002) Prevalence and trends in obesity among US adults, 1999–2000. JAMA 288:1723–1727

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the interviewers, students, and staff who worked on this study: Silvia Brendel, Nora Geraghty, Dina Gifkins, June Kittredge, Sharon Lojun, Elinor Miller, Louise Salant, Mathilde Saxon, Michelle Sriprasert, Elizabeth Ward, Doreen Wass, Melony Williams, Kay Yoon; and New Jersey Department of Health and Senior Services personnel Tara Blando, Stacey Izzard, Joan Kay, Betsy Kohler, Kevin Masterson, Helen Weiss. Financial support: National Cancer Institute grants R01CA83918 (S. Olson) and K07CA095666 (E. Bandera).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara H. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, S.H., Orlow, I., Bayuga, S. et al. Variants in hormone biosynthesis genes and risk of endometrial cancer. Cancer Causes Control 19, 955–963 (2008). https://doi.org/10.1007/s10552-008-9160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-008-9160-7

Keywords

Navigation