Skip to main content

Advertisement

Log in

Estimating age-specific breast cancer risks: a descriptive tool to identify age interactions

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

Clarifying age-specific female breast cancer risks and interactions may provide important etiologic clues.

Method

Using a population-based case–control study in Poland (2000–2003) of 2,386 incident breast cancer cases and 2,502 control subjects aged 25–74 years, we estimated age-specific breast cancer incidence rates according to risk factors.

Results

Breast cancer risks were elevated among women with positive family history (FH), younger age at menarche, older age at first full-term birth, nulliparity, exogenous hormonal usage, and reduced physical activity (PA). Notwithstanding overall risks, we observed statistically significant quantitative (non-crossover) and qualitative (crossover) age interactions for all risk factors except for FH and PA. For example, nulliparity compared to parity reduced breast cancer risk among women ages 25–39 years then rates crossed or reversed, after which nulliparity increased relative risks among women ages 40–74 years.

Conclusion

Though quantitative age interactions could be expected, qualitative interactions were somewhat counterintuitive. If confirmed in other populations, qualitative interactions for a continuous covariate such as age will be difficult to reconcile in a sequential (multistep or monolithic) ‘stochastic’ breast cancer model. Alternatively, the reversal of relative risks among younger and older women suggests subgroup heterogeneity with different etiologic mechanisms for early-onset and late-onset breast cancer types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clemmesen J (1948) Carcinoma of the breast. Br J Rad 21(252):583–590

    Article  CAS  Google Scholar 

  2. Moolgavkar SH, Lee JA, Hade RD (1978) Comparison of age-specific mortality from breast cancer in males in the United States and Japan. J Natl Cancer Inst 60(6):1223–1225

    PubMed  CAS  Google Scholar 

  3. Thomas DB (1993) Breast cancer in men. Epidemiol Rev 15(1):220–231

    PubMed  CAS  Google Scholar 

  4. Anderson WF, Althuis MD, Brinton LA, Devesa SS (2004) Is male breast cancer similar or different than female breast cancer? Breast Cancer Res Treat 83:77–86

    Article  PubMed  Google Scholar 

  5. Lilienfeld AM, Johnson EA (1955) The age distribution in female breast and genital cancers. Cancer 8:875–882

    Article  PubMed  CAS  Google Scholar 

  6. Anderson WF, Matsuno RK (2006) Breast cancer heterogeneity: a mixture of at least two main types? J Natl Cancer Inst 98(14):948–951

    PubMed  CAS  Google Scholar 

  7. Morabia A, Costanza MC (1998) International variability in ages at menarche, first livebirth, and menopause. World Health Organization Collaborative Study of Neoplasia and Steroid Contraceptives. Am J Epidemiol 148(12):1195–1205

    PubMed  CAS  Google Scholar 

  8. Morabia A, Flandre P (1992) Misclassification bias related to definition of menopausal status in case–control studies of breast cancer. Int J Epidemiol 21(2):222–228

    Article  PubMed  CAS  Google Scholar 

  9. Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG (1983) ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 303(5920):767–770

    Article  PubMed  CAS  Google Scholar 

  10. Colditz GA, Rosner B (2000) Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health Study. Am J Epidemiol 152(10):950–964

    Article  PubMed  CAS  Google Scholar 

  11. Colditz GA, Rosner BA (2006) What can be learnt from models of incidence rates? Breast Cancer Res 8(3):208

    Article  PubMed  Google Scholar 

  12. Clavel-Chapelon F, Gerber M (2002) Reproductive factors and breast cancer risk. Do they differ according to age at diagnosis? Breast Cancer Res Treat 72(2):107–115

    Article  PubMed  CAS  Google Scholar 

  13. MacMahon B, Cole P, Lin TM et al (1970) Age at first birth and breast cancer risk. Bull World Health Organ 43(2):209–221

    PubMed  CAS  Google Scholar 

  14. Adami HO, Hansen J, Jung B, Rimsten AJ (1980) Age at first birth, parity and risk of breast cancer in a Swedish population. Br J Cancer 42(5):651–658

    PubMed  CAS  Google Scholar 

  15. Pathak DR (2002) Dual effect of first full term pregnancy on breast cancer risk: empirical evidence and postulated underlying biology. Cancer Causes Control 13(4):295–298

    Article  PubMed  Google Scholar 

  16. Cleary MP, Maihle NJ (1997) The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med 216(1):28–43

    PubMed  CAS  Google Scholar 

  17. Garcia-Closas M, Brinton LA, Lissowska J et al (2006) Established breast cancer risk factors by clinically important tumour characteristics. Br J Cancer 95(1):123–129

    Article  PubMed  CAS  Google Scholar 

  18. Gail MH, Brinton LA, Byar DP et al (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81(24):1879–1886

    Article  PubMed  CAS  Google Scholar 

  19. Doll R, Hill AB (1952) A study of the aetiology of carcinoma of the lung. Br Med J 2(4797):1271–1286

    PubMed  CAS  Google Scholar 

  20. Doll R, Hill AB (1950) Smoking and carcinoma of the lung; preliminary report. Br Med J 2(4682):739–748

    Article  PubMed  CAS  Google Scholar 

  21. Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL (1959) Smoking and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst 22(1):173–203

    PubMed  CAS  Google Scholar 

  22. Ainsworth BE, Haskell WL, Whitt MC et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32(9 Suppl):S498–S504

    PubMed  CAS  Google Scholar 

  23. SEER. Surveillance, Epidemiology, and End Results (SEER) Program. Public-Use Database (1973–2002) National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2005, based on the November 2004 submission. 2005 [cited; Available from: www.seer.cancer.gov]

  24. Anderson WF, Chu KC, Chatterjee N, Brawley OW, Brinton LA (2001) Tumor variants by hormone receptor expression in white patients with node-negative breast cancer from the Surveillance, Epidemiology, and End Results database. J Clin Oncol 19(1):18–27

    PubMed  CAS  Google Scholar 

  25. Anderson WF, Chatterjee N, Ershler WB, Brawley OW (2002) Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End results database. Breast Cancer Res Treat 76(1):27–36

    Article  PubMed  CAS  Google Scholar 

  26. Miettinen O, Nurminen M (1985) Comparative analysis of two rates. Stat Med 4(2):213–226

    PubMed  CAS  Google Scholar 

  27. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, New York

    Google Scholar 

  28. Gail M, Simon R (1985) Testing for qualitative interactions between treatment effects and patient subsets. Biometrics 41(2):361–372

    Article  PubMed  CAS  Google Scholar 

  29. Pharoah PD, Day NE, Duffy S, Easton DF, Ponder BA (1997) Family history and the risk of breast cancer: a systematic review and meta-analysis. Int J Cancer 71(5):800–809

    Article  PubMed  CAS  Google Scholar 

  30. Janerich DT, Hoff MB (1982) Evidence for a crossover in breast cancer risk factors. Am J Epidemiol. 116(5):737–742

    PubMed  CAS  Google Scholar 

  31. Lubin JH, Burns PE, Blot WJ et al (1982) Risk factors for breast cancer in women in northern Alberta, Canada, as related to age at diagnosis. J Natl Cancer Inst 68(2):211–217

    PubMed  CAS  Google Scholar 

  32. Schedin P (2006) Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer 6(4):281–291

    Article  PubMed  CAS  Google Scholar 

  33. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer (1997) Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350(9084):1047–1059

  34. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies (1996). Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 347(9017):1713–27

  35. Bernstein L (2006) The risk of breast, endometrial and ovarian cancer in users of hormonal preparations. Basic Clin Pharmacol Toxicol 98(3):288–296

    Article  PubMed  CAS  Google Scholar 

  36. IARC handbooks on cancer prevention: weight control and physical activity (2002) Lyon, France, IARC press

  37. Bernstein L, Patel AV, Ursin G et al (2005) Lifetime recreational exercise activity and breast cancer risk among black women and white women. J Natl Cancer Inst 97(22):1671–1679

    Article  PubMed  Google Scholar 

  38. Peto R (1982) Statistical aspects of cancer trials. Chapman and Hall, London

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH/National Cancer Institute

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, W.F., Matsuno, R.K., Sherman, M.E. et al. Estimating age-specific breast cancer risks: a descriptive tool to identify age interactions . Cancer Causes Control 18, 439–447 (2007). https://doi.org/10.1007/s10552-006-0092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-006-0092-9

Keywords

Navigation