Skip to main content

Advertisement

Log in

USP17L2-SIRT7 axis regulates DNA damage repair and chemoresistance in breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Sirtuin7 (SIRT7), as a member of the sirtuin and NAD+-dependent protein-modifying enzyme family, plays an important role in regulating cellular metabolism, stress responses, tumorigenesis, and aging. Ubiquitination and deubiquitination are reversible post-translational modifications that regulate protein stability, enzyme activity, protein–protein interactions, and cellular signaling transduction. However, whether SIRT7 is regulated by deubiquitination signaling is unclear. This study aims to elucidate the molecular mechanism of SIRT7 via deubiquitination signaling.

Methods

USP17L2 or SIRT7-targeting shRNAs were used to deplete USP17L2 or SIRT7. Western blot was applied to assess the effects of USP17L2 or SIRT7 depletion. A co-immunoprecipitation assay was used to detect the interaction relationship. Cell Counting Kit-8 assays were applied to assess the viability of breast cancer cells. An immunohistochemistry assay was employed to detect the protein level in samples from breast cancer patients, and the TCGA database was applied to analyze the survival rate of breast cancer patients. Statistical analyses were performed with the Student’s t test (two-tailed unpaired) and χ2 test.

Results

We find that the deubiquitinase USP17L2 interacts with and deubiquitinates SIRT7, thereby increasing SIRT7 protein stability. In addition, USP17L2 regulates DNA damage repair through SIRT7. Furthermore, SIRT7 polyubiquitination is increased by knocking down of USP17L2, which leads to cancer cells sensitizing to chemotherapy. In breast cancer patient samples, high expression of USP17L2 is correlated with increased levels of SIRT7 protein. In conclusion, our study demonstrates that the USP17L2-SIRT7 axis is the new regulator in DNA damage response and chemo-response, suggesting that USP17L2 may be a prognostic factor and a potential therapeutic target in breast cancer.

Conclusion

Our results highlighted that USP17L2 regulates the chemoresistance of breast cancer cells in a SIRT7-dependent manner. Moreover, the role of USP17L2 as a potential therapeutic target in breast cancer and a prognostic factor for patients was elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

SIRT7:

Sirtuin7

HR:

Homologous recombination repair

NHEJ:

Non-homologous end joining

ATM:

Ataxia-telangiectasia mutated

5-FU:

5-Fluorouracil

CDK1:

Cyclin-dependent kinase 1

DUBs:

Deubiquitinating enzymes

UPS:

Ubiquitin–proteasome system

ATCC:

American Type Culture Collection

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

IHC:

Immunohistochemical

WT:

Wild-type

CA mutant:

Catalytically inactive mutant

Co-IP:

Co-immunoprecipitation

IP:

Immunoprecipitated

CHX:

Cycloheximide

CCK-8:

Cell counting Kit-8

DSBs:

DNA double-strand breaks

HDAC:

Histone deacetylase

AMPK:

Adenosine 5′-monophosphate (AMP)-activated protein kinase

MALAT1:

Metastasis associated in lung adenocarcinoma transcript 1

NRF2:

NF-E2-related factor 2

BRD4:

Bromodomain-containing protein 4

MCL1:

Myeloid cell leukemia 1

BRCA1:

Breast cancer gene 1

BRCA2:

Breast cancer gene 2

References

  1. Wu D, Li Y, Zhu KS, Wang H, Zhu WG (2018) Advances in Cellular Characterization of the Sirtuin Isoform, SIRT7. Front Endocrinol (Lausanne) 9:652

    Article  Google Scholar 

  2. Qi H, Shi X, Yu M, Liu B, Liu M, Song S, Chen S, Zou J, Zhu WG, Luo J (2018) Sirtuin 7-mediated deacetylation of WD repeat domain 77 (WDR77) suppresses cancer cell growth by reducing WDR77/PRMT5 transmethylase complex activity. J Biol Chem 293(46):17769–17779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K et al (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405):114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lu YF, Xu XP, Lu XP, Zhu Q, Liu G, Bao YT, Wen H, Li YL, Gu W, Zhu WG (2020) SIRT7 activates p53 by enhancing PCAF-mediated MDM2 degradation to arrest the cell cycle. Oncogene 39(24):4650–4665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohrin M, Shin J, Liu Y, Brown K, Luo H, Xi Y, Haynes CM, Chen D (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347(6228):1374–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nahalkova J (2015) Novel protein-protein interactions of TPPII, p53, and SIRT7. Mol Cell Biochem 409(1–2):13–22

    Article  CAS  PubMed  Google Scholar 

  7. Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO et al (2014) A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab 20(5):856–869

    Article  CAS  PubMed  Google Scholar 

  8. Tang M, Li Z, Zhang C, Lu X, Tu B, Cao Z, Li Y, Chen Y, Jiang L, Wang H et al (2019) SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Sci Adv 5(3):eaav1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG et al (2017) SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat Commun 8(1):318

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ashraf N, Zino S, Macintyre A, Kingsmore D, Payne AP, George WD, Shiels PG (2006) Altered sirtuin expression is associated with node-positive breast cancer. Br J Cancer 95(8):1056–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim JK, Noh JH, Jung KH, Eun JW, Bae HJ, Kim MG, Chang YG, Shen Q, Park WS, Lee JY et al (2013) Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology 57(3):1055–1067

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Bhatia R (2013) The controversial role of Sirtuins in tumorigenesis—SIRT7 joins the debate. Cell Res 23(1):10–12

    Article  PubMed  Google Scholar 

  13. Malik S, Villanova L, Tanaka S, Aonuma M, Roy N, Berber E, Pollack JR, Michishita-Kioi E, Chua KF (2015) SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci Rep 5:9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paredes S, Villanova L, Chua KF (2014) Molecular pathways: emerging roles of mammalian Sirtuin SIRT7 in cancer. Clin Cancer Res 20(7):1741–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu H, Ye W, Wu J, Meng X, Liu RY, Ying X, Zhou Y, Wang H, Pan C, Huang W (2014) Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin Cancer Res 20(13):3434–3445

    Article  CAS  PubMed  Google Scholar 

  16. Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L (2016) SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J 35(14):1488–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang M, Lu X, Zhang C, Du C, Cao L, Hou T, Li Z, Tu B, Cao Z, Li Y et al (2017) Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer. Theranostics 7(5):1346–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blank MF, Grummt I (2017) The seven faces of SIRT7. Transcription 8(2):67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grob A, Roussel P, Wright JE, McStay B, Hernandez-Verdun D, Sirri V (2009) Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis. J Cell Sci 122(Pt 4):489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun L, Fan G, Shan P, Qiu X, Dong S, Liao L, Yu C, Wang T, Gu X, Li Q et al (2016) Regulation of energy homeostasis by the ubiquitin-independent REGgamma proteasome. Nat Commun 7:12497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  22. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123(5):773–786

    Article  CAS  PubMed  Google Scholar 

  23. Clague MJ, Urbe S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 20(6):338–352

    Article  CAS  PubMed  Google Scholar 

  24. Yuan J, Luo K, Deng M, Li Y, Yin P, Gao B, Fang Y, Wu P, Liu T, Lou Z (2014) HERC2-USP20 axis regulates DNA damage checkpoint through Claspin. Nucleic Acids Res 42(21):13110–13121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo K, Li Y, Yin Y, Li L, Wu C, Chen Y, Nowsheen S, Hu Q, Zhang L, Lou Z et al (2017) USP49 negatively regulates tumorigenesis and chemoresistance through FKBP51-AKT signaling. EMBO J 36(10):1434–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu T, Yu J, Deng M, Yin Y, Zhang H, Luo K, Qin B, Li Y, Wu C, Ren T et al (2017) CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat Commun 8:13923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  28. Kiran S, Anwar T, Kiran M, Ramakrishna G (2015) Sirtuin 7 in cell proliferation, stress and disease: rise of the Seventh Sirtuin! Cell Signal 27(3):673–682

    Article  CAS  PubMed  Google Scholar 

  29. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R (2013) Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol Cell 52(3):303–313

    Article  CAS  PubMed  Google Scholar 

  31. Liu GF, Lu JY, Zhang YJ, Zhang LX, Lu GD, Xie ZJ, Cheng MB, Shen YF, Zhang Y (2016) C/EBPalpha negatively regulates SIRT7 expression via recruiting HDAC3 to the upstream-promoter of hepatocellular carcinoma cells. Biochim Biophys Acta 1859(2):348–354

    Article  CAS  PubMed  Google Scholar 

  32. Cioffi M, Vallespinos-Serrano M, Trabulo SM, Fernandez-Marcos PJ, Firment AN, Vazquez BN, Vieira CR, Mulero F, Camara JA, Cronin UP et al (2015) MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep 12(10):1594–1605

    Article  CAS  PubMed  Google Scholar 

  33. Han Y, Liu Y, Zhang H, Wang T, Diao R, Jiang Z, Gui Y, Cai Z (2013) Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1. FEBS Lett 587(23):3875–3882

    Article  CAS  PubMed  Google Scholar 

  34. Shi H, Ji Y, Zhang D, Liu Y, Fang P (2016) MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells. Oncol Rep 36(5):3051–3057

    Article  CAS  PubMed  Google Scholar 

  35. Jiang L, Xiong J, Zhan J, Yuan F, Tang M, Zhang C, Cao Z, Chen Y, Lu X, Li Y et al (2017) Ubiquitin-specific peptidase 7 (USP7)-mediated deubiquitination of the histone deacetylase SIRT7 regulates gluconeogenesis. J Biol Chem 292(32):13296–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burrows JF, McGrattan MJ, Rascle A, Humbert M, Baek KH, Johnston JA (2004) DUB-3, a cytokine-inducible deubiquitinating enzyme that blocks proliferation. J Biol Chem 279(14):13993–14000

    Article  CAS  PubMed  Google Scholar 

  37. Hu B, Deng T, Ma H, Liu Y, Feng P, Wei D, Ling N, Li L, Qiu S, Zhang L et al (2019) Deubiquitinase DUB3 regulates cell cycle progression via stabilizing Cyclin A for proliferation of non-small cell lung cancer cells. Cells 8(4):297

    Article  CAS  PubMed Central  Google Scholar 

  38. Delgado-Diaz MR, Martin Y, Berg A, Freire R, Smits VA (2014) Dub3 controls DNA damage signalling by direct deubiquitination of H2AX. Mol Oncol 8(5):884–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin X, Yan Y, Wang D, Ding D, Ma T, Ye Z, Jimenez R, Wang L, Wu H, Huang H (2018) DUB3 promotes BET inhibitor resistance and cancer progression by deubiquitinating BRD4. Mol Cell 71(4):592–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu X, Luo Q, Zhao P, Chang W, Wang Y, Shu T, Ding F, Li B, Liu Z (2019) MGMT-activated DUB3 stabilizes MCL1 and drives chemoresistance in ovarian cancer. Proc Natl Acad Sci USA 116(8):2961–2966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, Singh P, Chi YI, Wang C, Dong C et al (2017) Dub3 inhibition suppresses breast cancer invasion and mestasis by promoting Snail1 degradation. Nat Commun 8:14228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, Zheng Z, Song XM, Du RL, Zhang XD (2019) DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ 26(11):2300–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Helleday T (2010) Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis 31:955–960

    Article  CAS  PubMed  Google Scholar 

  44. Mavaddat N, Peock S, Frost D et al (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105(11):812–822

    Article  CAS  PubMed  Google Scholar 

  45. Venkitaraman AR (2014) Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science 343(6178):1470–1475

    Article  CAS  PubMed  Google Scholar 

  46. Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917

    Article  CAS  PubMed  Google Scholar 

  47. Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharyya A, Ear US, Koller BH et al (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275(31):23899–23903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our study was supported by the National Natural Science Foundation of China (91749115, 32090032, 32070713) and the Natural Science Foundation of Jiangxi Province (20181ACB20021).

Author information

Authors and Affiliations

Authors

Contributions

YS carried out the molecular lab work, participated in data analysis, participated in the design of the study, and drafted the manuscript; CW participated in the design of the study and revised the manuscript; LL, YChen, XW, XJ, YChang, and YL provided experimental technology. BYu guided experimental technology. JY conceived of the study, designed the study, coordinated the study, and helped draft the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bentong Yu or Jian Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Wu, C., Chang, Y. et al. USP17L2-SIRT7 axis regulates DNA damage repair and chemoresistance in breast cancer cells. Breast Cancer Res Treat 196, 31–44 (2022). https://doi.org/10.1007/s10549-022-06711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06711-3

Keywords

Navigation