Skip to main content

Advertisement

Log in

KMT2C is a potential biomarker of prognosis and chemotherapy sensitivity in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Epigenetic regulation plays critical roles in cancer progression, and high-frequency mutations or expression variations in epigenetic regulators have been frequently observed in tumorigenesis, serving as biomarkers and targets for cancer therapy. Here, we aimed to explore the function of epigenetic regulators in breast cancer.

Methods

The mutational landscape of epigenetic regulators in breast cancer samples was investigated based on datasets from the Cancer Genome Atlas. The Kaplan–Meier method was used for survival analysis. RNA sequencing (RNA-seq) in MCF-7 cells transfected with control siRNA or KMT2C siRNA was performed. Quantitative reverse transcription-PCR and chromatin immunoprecipitation were used to validate the RNA-seq results.

Results

Among the 450 epigenetic regulators, KMT2C was frequently mutated in breast cancer samples. The tumor mutational burden (TMB) was elevated in breast cancer samples with KMT2C mutations or low KMT2C mRNA levels compared to their counterparts with wild-type KMT2C or high KMT2C mRNA levels. Somatic mutation and low expression of KMT2C were independently correlated with the poor overall survival (OS) and disease-free survival (DFS) of the breast cancer samples, respectively. RNA-seq analysis combined with chromatin immunoprecipitation and qRT-PCR assays revealed that the depletion of KMT2C remarkably affected the expression of DNA damage repair-related genes. More importantly, the low expression of KMT2C was related to breast cancer cell sensitivity to chemotherapy and longer OS of breast cancer patients who underwent chemotherapy.

Conclusion

We conclude that KMT2C could serve as a potential biomarker of prognosis and chemotherapy sensitivity by affecting the DNA damage repair-related genes of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available in the TCGA repository. https://portal.gdc.cancer.gov/

Abbreviations

COSMIC:

Catalogue of somatic mutations in cancer

ChIP:

Chromatin immunoprecipitation

DAVID:

Database for annotation, visualization, and integrated analysis

DEG:

Differential expression gene

DFS:

Disease-free survival

DR:

DNA replication

FC:

Fold change

GO:

Gene ontology

HR:

Homologous recombination

KEGG:

Kyoto encyclopedia of genes and genomes

MCE:

MedChemExpress

MMR:

Mismatch repair

MSK-IMPACT:

Memorial sloan kettering-integrated mutation profiling of actionable cancer targets

OS:

Overall survival

qRT-PCR:

Quantitative reverse transcription-PCR

RNA-seq:

RNA sequencing

TCGA:

The cancer genome atlas

TMB:

Tumor mutational burden

References

  1. Verma M, Rogers S, Divi RL, Schully SD, Nelson S, Joseph SuL, Ross SA, Pilch S, Winn DM, Khoury MJ (2014) Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomarkers Prev 23(2):223–233

    Article  PubMed  Google Scholar 

  2. Skvortsova K, Iovino N, Bogdanovic O (2018) Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol 19(12):774–790

    Article  CAS  PubMed  Google Scholar 

  3. Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 149(5):1204–1225

    Article  CAS  PubMed  Google Scholar 

  4. Chen Y, Hong T, Wang S, Mo J, Tian T, Zhou X (2017) Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev 46(10):2844–2872

    Article  CAS  PubMed  Google Scholar 

  5. Mair B, Kubicek S, Nijman SM (2014) Exploiting epigenetic vulnerabilities for cancer therapeutics. Trends Pharmacol Sci 35(3):136–145

    Article  CAS  PubMed  Google Scholar 

  6. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  7. Toh TB, Lim JJ, Chow EK (2017) Epigenetics in cancer stem cells. Mol Cancer 16(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Nebbioso A, Tambaro FP, Dell’Aversana C, Altucci L (2018) Cancer epigenetics: moving forward. PLoS Genet 14(6):e1007362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Baxter E, Windloch K, Gannon F, Lee JS (2014) Epigenetic regulation in cancer progression. Cell Biosci 4:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sun Y, Sun Y, Yue S, Wang Y, Lu F (2018) Histone deacetylase inhibitors in cancer therapy. Curr Top Med Chem 18(28):2420–2428

    Article  CAS  PubMed  Google Scholar 

  11. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, Zhang H, McLellan M, Yau C, Kandoth C et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163(2):506–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486(7403):353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Han J, Zhang Y, Cao F, Liu Z, Li S, Wu J, Hu C, Wang Y, Shuai J et al (2016) Structural basis for activity regulation of MLL family methyltransferases. Nature 530(7591):447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xue H, Yao T, Cao M, Zhu G, Li Y, Yuan G, Chen Y, Lei M, Huang J (2019) Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature 573(7774):445–449

    Article  CAS  PubMed  Google Scholar 

  16. Jozwik KM, Chernukhin I, Serandour AA, Nagarajan S, Carroll JS (2016) FOXA1 directs H3K4 monomethylation at enhancers via recruitment of the methyltransferase MLL3. Cell Rep 17(10):2715–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen X, Zhang G, Chen B, Wang Y, Guo L, Cao L, Ren C, Wen L, Liao N (2019) Association between histone lysine methyltransferase KMT2C mutation and clinicopathological factors in breast cancer. Biomed Pharmacother 116:108997

    Article  CAS  PubMed  Google Scholar 

  18. Sato K, Akimoto K (2017) Expression levels of KMT2C and SLC20A1 identified by information-theoretical analysis are powerful prognostic biomarkers in estrogen receptor-positive breast cancer. Clin Breast Cancer 17(3):e135–e142

    Article  CAS  PubMed  Google Scholar 

  19. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  20. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  21. Luo L, Zhang J, Tang H, Zhai D, Huang D, Ling L, Wang X, Liu T, Zhang Q, Zhang Z et al (2020) LncRNA SNORD3A specifically sensitizes breast cancer cells to 5-FU by sponging miR-185-5p to enhance UMPS expression. Cell Death Dis 11(5):329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ponde NF, Zardavas D, Piccart M (2019) Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol 16(1):27–44

    Article  CAS  PubMed  Google Scholar 

  23. Hassan MS, Ansari J, Spooner D, Hussain SA (2010) Chemotherapy for breast cancer. Oncol Rep 24(5):1121–1131

    Article  CAS  PubMed  Google Scholar 

  24. Diaby V, Tawk R, Sanogo V, Xiao H, Montero AJ (2015) A review of systematic reviews of the cost-effectiveness of hormone therapy, chemotherapy, and targeted therapy for breast cancer. Breast Cancer Res Treat 151(1):27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dowsett M, Nielsen TO, A’Hern R, Bartlett J, Coombes RC, Cuzick J, Ellis M, Henry NL, Hugh JC, Lively T et al (2011) Assessment of Ki67 in breast cancer: recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst 103(22):1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McArthur HL, Hudis CA (2007) Breast cancer chemotherapy. Cancer J 13(3):141–147

    Article  CAS  PubMed  Google Scholar 

  27. Karsli-Ceppioglu S, Dagdemir A, Judes G, Ngollo M, Penault-Llorca F, Pajon A, Bignon YJ, Bernard-Gallon D (2014) Epigenetic mechanisms of breast cancer: an update of the current knowledge. Epigenomics 6(6):651–664

    Article  CAS  PubMed  Google Scholar 

  28. Byler S, Goldgar S, Heerboth S, Leary M, Housman G, Moulton K, Sarkar S (2014) Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res 34(3):1071–1077

    CAS  PubMed  Google Scholar 

  29. Munir MT, Ponce C, Powell CA, Tarafdar K, Yanagita T, Choudhury M, Gollahon LS, Rahman SM (2018) The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer. J Steroid Biochem Mol Biol 183:1–9

    Article  CAS  PubMed  Google Scholar 

  30. Pasculli B, Barbano R, Parrella P (2018) Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Semin Cancer Biol 51:22–35

    Article  PubMed  Google Scholar 

  31. Henser-Brownhill T, Monserrat J, Scaffidi P (2017) Generation of an arrayed CRISPR-Cas9 library targeting epigenetic regulators: from high-content screens to in vivo assays. Epigenetics 12(12):1065–1075

    Article  PubMed  Google Scholar 

  32. Maura F, Degasperi A, Nadeu F, Leongamornlert D, Davies H, Moore L, Royo R, Ziccheddu B, Puente XS, Avet-Loiseau H et al (2019) A practical guide for mutational signature analysis in hematological malignancies. Nat Commun 10(1):2969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang S, Pitt JJ, Zheng Y, Yoshimatsu TF, Gao G, Sanni A, Oluwasola O, Ajani M, Fitzgerald D, Odetunde A et al (2019) Germline variants and somatic mutation signatures of breast cancer across populations of African and European ancestry in the US and Nigeria. Int J Cancer 145(12):3321–3333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  36. Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    Article  CAS  PubMed  Google Scholar 

  37. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Walter W, Sanchez-Cabo F, Ricote M (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31(17):2912–2914

    Article  CAS  PubMed  Google Scholar 

  39. Falahi F, van Kruchten M, Martinet N, Hospers GA, Rots MG (2014) Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer. Breast Cancer Res 16(4):412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wahabi K, Perwez A, Kamarudheen S, Bhat ZI, Mehta A, Rizvi MMA (2019) Parkin gene mutations are not common, but its epigenetic inactivation is a frequent event and predicts poor survival in advanced breast cancer patients. BMC Cancer 19(1):820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Helleday T, Eshtad S, Nik-Zainal S (2014) Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 15(9):585–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lessel D, Vaz B, Halder S, Lockhart PJ, Marinovic-Terzic I, Lopez-Mosqueda J, Philipp M, Sim JC, Smith KR, Oehler J et al (2014) Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet 46(11):1239–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16(10):593–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JHJ, Robbins PD (2018) Nuclear genomic instability and aging. Annu Rev Biochem 87:295–322

    Article  CAS  PubMed  Google Scholar 

  45. Hoglander EK, Nord S, Wedge DC, Lingjaerde OC, Silwal-Pandit L, Gythfeldt HV, Vollan HKM, Fleischer T, Krohn M, Schlitchting E et al (2018) Time series analysis of neoadjuvant chemotherapy and bevacizumab-treated breast carcinomas reveals a systemic shift in genomic aberrations. Genome Med 10(1):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gulluni F, Martini M, De Santis MC, Campa CC, Ghigo A, Margaria JP, Ciraolo E, Franco I, Ala U, Annaratone L et al (2017) Mitotic spindle assembly and genomic stability in breast cancer require PI3K-C2alpha scaffolding function. Cancer Cell 32(4):444–459

    Article  CAS  PubMed  Google Scholar 

  47. Wein L, Loi S (2017) Mechanisms of resistance of chemotherapy in early-stage triple negative breast cancer (TNBC). Breast 34(Suppl 1):S27–S30

    Article  PubMed  Google Scholar 

  48. Woolston C (2015) Breast cancer. Nature 527(7578):S101

    Article  CAS  PubMed  Google Scholar 

  49. DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61(6):409–418

    Article  PubMed  Google Scholar 

  50. Chodosh LA (2011) Breast cancer: current state and future promise. Breast Cancer Res 13(6):113

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hutchinson L (2010) Breast cancer: challenges, controversies, breakthroughs. Nat Rev Clin Oncol 7(12):669–670

    Article  PubMed  Google Scholar 

  52. Ansari KI, Hussain I, Kasiri S, Mandal SS (2012) HOXC10 is overexpressed in breast cancer and transcriptionally regulated by estrogen via involvement of histone methylases MLL3 and MLL4. J Mol Endocrinol 48(1):61–75

    Article  CAS  PubMed  Google Scholar 

  53. Kim SS, Lee MH, Lee MO (2020) Histone methyltransferases regulate the transcriptional expression of ERalpha and the proliferation of tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat 180(1):45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349(6255):1483–1489

    Article  CAS  PubMed  Google Scholar 

  55. Feinberg AP, Koldobskiy MA, Gondor A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17(5):284–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cho SJ, Yoon C, Lee JH, Chang KK, Lin JX, Kim YH, Kook MC, Aksoy BA, Park DJ, Ashktorab H et al (2018) KMT2C mutations in diffuse-type gastric adenocarcinoma promote epithelial-to-mesenchymal transition. Clin Cancer Res 24(24):6556–6569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rampias T, Karagiannis D, Avgeris M, Polyzos A, Kokkalis A, Kanaki Z, Kousidou E, Tzetis M, Kanavakis E, Stravodimos K et al (2019) The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer. EMBO Rep 20(3):e46821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, Soria JC, Dien AT, Adnani Y, Kamal M et al (2019) Genomic characterization of metastatic breast cancers. Nature 569(7757):560–564

    Article  CAS  PubMed  Google Scholar 

  59. Dawkins JB, Wang J, Maniati E, Heward JA, Koniali L, Kocher HM, Martin SA, Chelala C, Balkwill FR, Fitzgibbon J et al (2016) Reduced expression of histone methyltransferases KMT2C and KMT2D correlates with improved outcome in pancreatic ductal adenocarcinoma. Cancer Res 76(16):4861–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, Zhang F, Zhao ZR, Li ZT, Liu ZY et al (2014) Genetic landscape of esophageal squamous cell carcinoma. Nat Genet 46(10):1097–1102

    Article  CAS  PubMed  Google Scholar 

  61. Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, Peters S (2019) Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30(1):44–56

    Article  CAS  PubMed  Google Scholar 

  62. Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377(25):2500–2501

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hellmann MD, Callahan MK, Awad MM, Calvo E, Ascierto PA, Atmaca A, Rizvi NA, Hirsch FR, Selvaggi G, Szustakowski JD et al (2018) Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 33(5):853–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gupta A, Mutebi M, Bardia A (2015) Gene-expression-based predictors for breast cancer. Ann Surg Oncol 22(11):3418–3432

    Article  PubMed  Google Scholar 

  65. Criscitiello C, Viale G, Curigliano G (2019) Harmonizing gene signatures to predict benefit from adjuvant chemotherapy in early breast cancer. Curr Opin Oncol 31(6):472–479

    Article  CAS  PubMed  Google Scholar 

  66. Germano S, O’Driscoll L (2009) Breast cancer: understanding sensitivity and resistance to chemotherapy and targeted therapies to aid in personalised medicine. Curr Cancer Drug Targets 9(3):398–418

    Article  CAS  PubMed  Google Scholar 

  67. Wang L, Zhao Z, Ozark PA, Fantini D, Marshall SA, Rendleman EJ, Cozzolino KA, Louis N, He X, Morgan MA et al (2018) Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy. Nat Med 24(6):758–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McNeer NA, Philip J, Geiger H, Ries RE, Lavallee VP, Walsh M, Shah M, Arora K, Emde AK, Robine N et al (2019) Genetic mechanisms of primary chemotherapy resistance in pediatric acute myeloid leukemia. Leukemia 33(8):1934–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gala K, Li Q, Sinha A, Razavi P, Dorso M, Sanchez-Vega F, Chung YR, Hendrickson R, Hsieh JJ, Berger M et al (2018) KMT2C mediates the estrogen dependence of breast cancer through regulation of ERalpha enhancer function. Oncogene 37(34):4692–4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tubbs A, Nussenzweig A (2017) Endogenous DNA damage as a source of genomic instability in cancer. Cell 168(4):644–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A et al (2019) Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51(2):202–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu L, Bai X, Wang J, Tang XR, Wu DH, Du SS, Du XJ, Zhang YW, Zhu HB, Fang Y et al (2019) Combination of TMB and CNA stratifies prognostic and predictive responses to immunotherapy across metastatic cancer. Clin Cancer Res 25(24):7413–7423

    Article  CAS  PubMed  Google Scholar 

  73. Tacconi EM, Badie S, De Gregoriis G, Reislander T, Lai X, Porru M, Folio C, Moore J, Kopp A, Baguna Torres J et al (2019) Chlorambucil targets BRCA1/2-deficient tumours and counteracts PARP inhibitor resistance. EMBO Mol Med 11(7):e9982

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lord CJ, Tutt AN, Ashworth A (2015) Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med 66:455–470

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Number 81803778 to JJS), a grant (2020KY1085 to QRF) from the Medical and Health Science and Technology Program of Zhejiang Province, a Grant (2020ZDYF10 to QRF) from the Key R&D Program of Lishui City, and a Grant (LY21H160010 to YY) from the Basic Public Welfare Research Program of Zhejiang.

Author information

Authors and Affiliations

Authors

Contributions

JJS and YY proposed and designed the study. YY and LXH wrote the manuscript. LXH conducted the bioinformatics analysis. QRF, LXH, XM, MMM, and ZSY performed the experiments.

Corresponding authors

Correspondence to Jiansong Ji or Yang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Qiu, R., Xu, M. et al. KMT2C is a potential biomarker of prognosis and chemotherapy sensitivity in breast cancer. Breast Cancer Res Treat 189, 347–361 (2021). https://doi.org/10.1007/s10549-021-06325-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06325-1

Keywords

Navigation