Skip to main content

Advertisement

Log in

A phase I trial of sorafenib with whole brain radiotherapy (WBRT) in breast cancer patients with brain metastases and a correlative study of FLT-PET brain imaging

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Sorafenib has demonstrated anti-tumor efficacy and radiosensitizing activity preclinically and in breast cancer. We examined sorafenib in combination with whole brain radiotherapy (WBRT) and explored the [18F] 3′deoxy-3′-fluorothymidine (FLT)-PET as a novel brain imaging modality in breast cancer brain metastases.

Methods

A phase I trial of WBRT + sorafenib was conducted using a 3 + 3 design with safety-expansion cohort. Sorafenib was given daily at the start of WBRT for 21 days. The primary endpoints were to determine a maximum tolerated dose (MTD) and to evaluate safety and toxicity. The secondary endpoint was CNS progression-free survival (CNS-PFS). MacDonald Criteria were used for response assessment with a correlative serial FLT-PET imaging study.

Results

13 pts were evaluable for dose-limiting toxicity (DLT). DLTs were grade 4 increased lipase at 200 mg (n = 1) and grade 3 rash at 400 mg (n = 3). The MTD was 200 mg. The overall response rate was 71%. Median CNS-PFS was 12.8 months (95%CI: 6.7-NR). A total of 15 pts (10 WBRT + sorafenib and 5 WBRT) were enrolled in the FLT-PET study: baseline (n = 15), 7–10 days post WBRT (FU1, n = 14), and an additional 12 week (n = 9). A decline in average SUVmax of ≥ 25% was seen in 9/10 (90%) of WBRT + sorafenib patients and 2/4 (50%) of WBRT only patients.

Conclusions

Concurrent WBRT and sorafenib appear safe at 200 mg daily dose with clinical activity. CNS response was favorable compared to historical controls. This combination should be considered for further efficacy evaluation. FLT-PET may be useful as an early response imaging tool for brain metastases.

Trial and Clinical Registry

Trial registration numbers and dates: NCT01724606 (November 12, 2012) and NCT01621906 (June 18, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study may be available from the corresponding author on reasonable request after an institutional and sponsor review and approval.

References

  1. Achrol AS, Rennert RC, Anders C, Soffietti R, Ahluwalia MS, Nayak L, Peters S, Arvold ND, Harsh GR, Steeg PS, Chang SD (2019) Brain metastases. Nat Rev Dis Primers 5(1):5. https://doi.org/10.1038/s41572-018-0055-y

  2. Morikawa A, Jhaveri K, Seidman A (2013) Clinical trials for breast cancer with brain metastases challenges and new directions. Curr Breast Cancer Rep 5(4):293–301. https://doi.org/10.1007/s12609-013-0120-1

    Article  CAS  Google Scholar 

  3. Anders CK (2016) Management of brain metastases in breast cancer. Clin Adv Hematol Oncol H&O 14(9):686–688

    Google Scholar 

  4. Ibrahim H, Yaroko AA (2019) Palliative external beam radiotherapy for advanced breast cancer patients with brain metastasis in the university college hospital Ibadan. Ann Afr Med 18(3):127–131. https://doi.org/10.4103/aam.aam_42_18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cagney DN, Lamba N, Montoya S, Li P, Besse L, Martin AM, Brigell RH, Catalano PJ, Brown PD, Leone JP, Tanguturi SK, Haas-Kogan DA, Alexander BM, Lin NU, Aizer AA (2019) Breast cancer subtype and intracranial recurrence patterns after brain-directed radiation for brain metastases. Breast Cancer Res Treat 176(1):171–179. https://doi.org/10.1007/s10549-019-05236-6

    Article  PubMed  Google Scholar 

  6. Abe E, Aoyama H (2012) The role of whole brain radiation therapy for the management of brain metastases in the era of stereotactic radiosurgery. Curr Oncol Rep 14(1):79–84. https://doi.org/10.1007/s11912-011-0201-0

    Article  CAS  PubMed  Google Scholar 

  7. Aoyama H (2011) Radiation therapy for brain metastases in breast cancer patients. Breast Cancer 18(4):244–251. https://doi.org/10.1007/s12282-010-0207-8

    Article  PubMed  Google Scholar 

  8. Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, Choucair A, Fox S, Suh JH, Roberge D, Kavadi V, Bentzen SM, Mehta MP, Watkins-Bruner D (2013) Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol 15(10):1429–1437. https://doi.org/10.1093/neuonc/not114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mehta MP, Shapiro WR, Phan SC, Gervais R, Carrie C, Chabot P, Patchell RA, Glantz MJ, Recht L, Langer C, Sur RK, Roa WH, Mahe MA, Fortin A, Nieder C, Meyers CA, Smith JA, Miller RA, Renschler MF (2009) Motexafin gadolinium combined with prompt whole brain radiotherapy prolongs time to neurologic progression in non-small-cell lung cancer patients with brain metastases: results of a phase III trial. Int J Radiat Oncol Biol Phys 73(4):1069–1076. https://doi.org/10.1016/j.ijrobp.2008.05.068

    Article  CAS  PubMed  Google Scholar 

  10. Chargari C, Campana F, Pierga JY, Vedrine L, Ricard D, Le Moulec S, Fourquet A, Kirova YM (2010) Whole-brain radiation therapy in breast cancer patients with brain metastases. Nat Rev Clin Oncol 7(11):632–640. https://doi.org/10.1038/nrclinonc.2010.119

    Article  PubMed  Google Scholar 

  11. El Kaffas A, Al-Mahrouki A, Tran WT, Giles A, Czarnota GJ (2014) Sunitinib effects on the radiation response of endothelial and breast tumor cells. Microvasc Res 92:1–9. https://doi.org/10.1016/j.mvr.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  12. Lee JH, Shim JW, Choi YJ, Heo K, Yang K (2013) The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1alpha expression. Oncol Rep 29(3):917–924. https://doi.org/10.3892/or.2013.2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt B, Lee HJ, Ryeom S, Yoon SS (2012) Combining bevacizumab with radiation or chemoradiation for solid tumors: a review of the scientific rationale, and clinical trials. Curr Angiogenes 1(3):169–179. https://doi.org/10.2174/2211552811201030169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moreno-Aspitia A (2010) Clinical overview of sorafenib in breast cancer. Future Oncol 6(5):655–663. https://doi.org/10.2217/fon.10.41s

    Article  CAS  PubMed  Google Scholar 

  15. Dattachoudhury S, Sharma R, Kumar A, Jaganathan BG (2020) Sorafenib inhibits proliferation, migration and invasion of breast cancer cells. Oncology 98(7):478–486. https://doi.org/10.1159/000505521

    Article  CAS  PubMed  Google Scholar 

  16. Heravi M, Tomic N, Liang L, Devic S, Holmes J, Deblois F, Radzioch D, Muanza T (2012) Sorafenib in combination with ionizing radiation has a greater anti-tumour activity in a breast cancer model. Anticancer Drugs 23(5):525–533. https://doi.org/10.1097/CAD.0b013e32834ea5b3

    Article  CAS  PubMed  Google Scholar 

  17. Gradishar WJ, Kaklamani V, Sahoo TP, Lokanatha D, Raina V, Bondarde S, Jain M, Ro SK, Lokker NA, Schwartzberg L (2013) A double-blind, randomised, placebo-controlled, phase 2b study evaluating sorafenib in combination with paclitaxel as a first-line therapy in patients with HER2-negative advanced breast cancer. Eur J Cancer 49(2):312–322. https://doi.org/10.1016/j.ejca.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  18. Bonelli MA, Fumarola C, Alfieri RR, La Monica S, Cavazzoni A, Galetti M, Gatti R, Belletti S, Harris AL, Fox SB, Evans DB, Dowsett M, Martin LA, Bottini A, Generali D, Petronini PG (2010) Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat 124(1):79–88. https://doi.org/10.1007/s10549-009-0714-5

    Article  CAS  PubMed  Google Scholar 

  19. Baselga J, Segalla JG, Roche H, Del Giglio A, Pinczowski H, Ciruelos EM, Filho SC, Gomez P, Van Eyll B, Bermejo B, Llombart A, Garicochea B, Duran MA, Hoff PM, Espie M, de Moraes AA, Ribeiro RA, Mathias C, Gil Gil M, Ojeda B, Morales J, Kwon Ro S, Li S, Costa F (2012) Sorafenib in combination with capecitabine: an oral regimen for patients with HER2-negative locally advanced or metastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 30(13):1484–1491. https://doi.org/10.1200/JCO.2011.36.7771

    Article  CAS  Google Scholar 

  20. Fumarola C, Caffarra C, La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Galvani E, Generali D, Petronini PG, Bonelli MA (2013) Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Breast Cancer Res Treat 141(1):67–78. https://doi.org/10.1007/s10549-013-2668-x

    Article  CAS  PubMed  Google Scholar 

  21. Cha J, Seong J, Lee IJ, Kim JW, Han KH (2013) Feasibility of sorafenib combined with local radiotherapy in advanced hepatocellular carcinoma. Yonsei Med J 54(5):1178–1185. https://doi.org/10.3349/ymj.2013.54.5.1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu W, Gu K, Yu Z, Yuan D, He M, Ma N, Lai S, Zhao J, Ren Z, Zhang X, Shao C, Jiang GL (2013) Sorafenib potentiates irradiation effect in hepatocellular carcinoma in vitro and in vivo. Cancer Lett 329(1):109–117. https://doi.org/10.1016/j.canlet.2012.10.024

    Article  CAS  PubMed  Google Scholar 

  23. Eisele SC, Wen PY, Lee EQ (2016) Assessment of brain tumor response: RANO and its offspring. Curr Treat Options Oncol 17(7):35. https://doi.org/10.1007/s11864-016-0413-5

    Article  PubMed  Google Scholar 

  24. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, Bendszus M, Brown PD, Camidge DR, Chang SM, Dancey J, de Vries EG, Gaspar LE, Harris GJ, Hodi FS, Kalkanis SN, Linskey ME, Macdonald DR, Margolin K, Mehta MP, Schiff D, Soffietti R, Suh JH, van den Bent MJ, Vogelbaum MA, Wen PY, Response Assessment in Neuro-Oncology group (2015) Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol 16(6):e270-278. https://doi.org/10.1016/S1470-2045(15)70057-4

    Article  PubMed  Google Scholar 

  25. Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 22(6):633–638. https://doi.org/10.1097/WCO.0b013e328332363e

    Article  PubMed  Google Scholar 

  26. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol Off J Am Soc Clin Oncol 28(11):1963–1972. https://doi.org/10.1200/JCO.2009.26.3541

    Article  Google Scholar 

  27. Galldiks N, Langen KJ, Albert NL, Chamberlain M, Soffietti R, Kim MM, Law I, Le Rhun E, Chang S, Schwarting J, Combs SE, Preusser M, Forsyth P, Pope W, Weller M, Tonn JC (2019) PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 21(5):585–595. https://doi.org/10.1093/neuonc/noz003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31(12):1659–1672. https://doi.org/10.1007/s00259-004-1687-6

    Article  PubMed  Google Scholar 

  29. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, Satyamurthy N, Pope W, Lai A, Phelps ME, Cloughesy T (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol Off J Am Soc Clin Oncol 25(30):4714–4721. https://doi.org/10.1200/JCO.2006.10.5825

    Article  CAS  Google Scholar 

  30. Nikaki A, Papadopoulos V, Valotassiou V, Efthymiadou R, Angelidis G, Tsougos I, Prassopoulos V, Georgoulias P (2019) Evaluation of the performance of 18F-fluorothymidine positron emission tomography/computed tomography (18F-FLT-PET/CT) in metastatic brain lesions. Diagnostics (Basel). https://doi.org/10.3390/diagnostics9010017

    Article  Google Scholar 

  31. O’Sullivan CC, Lindenberg M, Bryla C, Patronas N, Peer CJ, Amiri-Kordestani L, Davarpanah N, Gonzalez EM, Burotto M, Choyke P, Steinberg SM, Liewehr DJ, Figg WD, Fojo T, Balasubramaniam S, Bates SE (2016) ANG1005 for breast cancer brain metastases: correlation between (18)F-FLT-PET after first cycle and MRI in response assessment. Breast Cancer Res Treat 160(1):51–59. https://doi.org/10.1007/s10549-016-3972-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pasquier D, Darlix A, Louvel G, Fraisse J, Jacot W, Brain E, Petit A, Mouret-Reynier MA, Goncalves A, Dalenc F, Deluche E, Fresnel JS, Augereau P, Ferrero JM, Geffrelot J, Fumet JD, Lecouillard I, Cottu P, Petit T, Uwer L, Jouannaud C, Leheurteur M, Dieras V, Robain M, Mouttet-Audouard R, Bachelot T, Courtinard C (2020) Treatment and outcomes in patients with central nervous system metastases from breast cancer in the real-life ESME MBC cohort. Eur J Cancer 125:22–30. https://doi.org/10.1016/j.ejca.2019.11.001

    Article  PubMed  Google Scholar 

  33. Kim JS, Kim K, Jung W, Shin KH, Im SA, Kim HJ, Kim YB, Chang JS, Choi DH, Park YH, Kim DY, Kim TH, Choi BO, Lee SW, Kim S, Kwon J, Kang KM, Chung WK, Kim KS, Nam JH, Yoon WS, Kim JH, Cha J, Oh YK, Kim IA (2019) Survival outcomes of breast cancer patients with brain metastases: a multicenter retrospective study in Korea (KROG 16–12). Breast 49:41–47. https://doi.org/10.1016/j.breast.2019.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vern-Gross TZ, Lawrence JA, Case LD, McMullen KP, Bourland JD, Metheny-Barlow LJ, Ellis TL, Tatter SB, Shaw EG, Urbanic JJ, Chan MD (2012) Breast cancer subtype affects patterns of failure of brain metastases after treatment with stereotactic radiosurgery. J Neurooncol 110(3):381–388. https://doi.org/10.1007/s11060-012-0976-3

    Article  PubMed  Google Scholar 

  35. Schwartzberg LS, Tauer KW, Hermann RC, Makari-Judson G, Isaacs C, Beck JT, Kaklamani V, Stepanski EJ, Rugo HS, Wang W, Bell-McGuinn K, Kirshner JJ, Eisenberg P, Emanuelson R, Keaton M, Levine E, Medgyesy DC, Qamar R, Starr A, Ro SK, Lokker NA, Hudis CA (2013) Sorafenib or placebo with either gemcitabine or capecitabine in patients with HER-2-negative advanced breast cancer that progressed during or after bevacizumab. Clin Cancer Res Off J Am Assoc Cancer Res 19(10):2745–2754. https://doi.org/10.1158/1078-0432.CCR-12-3177

    Article  CAS  Google Scholar 

  36. Hu D, Hu Y, Li J, Wang X (2018) Symptomatic treatment of brain metastases in renal cell carcinoma with sorafenib. J Cancer Res Ther 14(Supplement):S1223–S1226. https://doi.org/10.4103/0973-1482.189402

    Article  PubMed  Google Scholar 

  37. Nabors LB, Supko JG, Rosenfeld M, Chamberlain M, Phuphanich S, Batchelor T, Desideri S, Ye X, Wright J, Gujar S, Grossman SA (2011) Phase I trial of sorafenib in patients with recurrent or progressive malignant glioma. Neuro Oncol 13(12):1324–1330. https://doi.org/10.1093/neuonc/nor145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ranze O, Hofmann E, Distelrath A, Hoeffkes HG (2007) Renal cell cancer presented with leptomeningeal carcinomatosis effectively treated with sorafenib. Onkologie 30(8–9):450–451. https://doi.org/10.1159/0000105131

    Article  PubMed  Google Scholar 

  39. Massard C, Zonierek J, Gross-Goupil M, Fizazi K, Szczylik C, Escudier B (2010) Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann Oncol Off J Eur Soc Med Oncol ESMO 21(5):1027–1031. https://doi.org/10.1093/annonc/mdp411

    Article  CAS  Google Scholar 

  40. Arneson K, Mondschein J, Stavas M, Cmelak AJ, Attia A, Horn L, Niermann K, Puzanov I, Chakravarthy AB, Xia F (2017) A phase I trial of concurrent sorafenib and stereotactic radiosurgery for patients with brain metastases. J Neurooncol 133(2):435–442. https://doi.org/10.1007/s11060-017-2455-3

    Article  CAS  PubMed  Google Scholar 

  41. Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H (2020) Low-dose sorafenib acts as a mitochondrial uncoupler and ameliorates nonalcoholic steatohepatitis. Cell Metab 31(6):1206. https://doi.org/10.1016/j.cmet.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  42. Lohmeyer J, Nerreter T, Dotterweich J, Einsele H, Seggewiss-Bernhardt R (2018) Sorafenib paradoxically activates the RAS/RAF/ERK pathway in polyclonal human NK cells during expansion and thereby enhances effector functions in a dose- and time-dependent manner. Clin Exp Immunol 193(1):64–72. https://doi.org/10.1111/cei.13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iyer RV, Maguire O, Kim M, Curtin LI, Sexton S, Fisher DT, Schihl SA, Fetterly G, Menne S, Minderman H (2019) Dose-dependent sorafenib-induced immunosuppression is associated with aberrant NFAT activation and expression of PD-1 in T cells. Cancers (Basel). https://doi.org/10.3390/cancers11050681

    Article  Google Scholar 

  44. Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK (2018) Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 15(5):325–340. https://doi.org/10.1038/nrclinonc.2018.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang Y, Goel S, Duda DG, Fukumura D, Jain RK (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Can Res 73(10):2943–2948. https://doi.org/10.1158/0008-5472.CAN-12-4354

    Article  CAS  Google Scholar 

  46. Cao K, Abbassi L, Romano E, Kirova Y (2020) Radiation therapy and immunotherapy in breast cancer treatment: preliminary data and perspectives. Expert Rev Anticancer Ther. https://doi.org/10.1080/14737140.2021.1868993

    Article  PubMed  Google Scholar 

  47. Su Z, Zhou L, Xue J, Lu Y (2020) Integration of stereotactic radiosurgery or whole brain radiation therapy with immunotherapy for treatment of brain metastases. Chin J Cancer Res 32(4):448–466. https://doi.org/10.21147/j.issn.1000-9604.2020.04.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Formenti SC, Demaria S (2020) Future of Radiation and Immunotherapy. Int J Radiat Oncol Biol Phys 108(1):3–5. https://doi.org/10.1016/j.ijrobp.2020.04.034

    Article  PubMed  Google Scholar 

  49. Cao KI, Lebas N, Gerber S, Levy C, Le Scodan R, Bourgier C, Pierga JY, Gobillion A, Savignoni A, Kirova YM (2015) Phase II randomized study of whole-brain radiation therapy with or without concurrent temozolomide for brain metastases from breast cancer. Ann Oncol Off J Eur Soc Med Oncol ESMO 26(1):89–94. https://doi.org/10.1093/annonc/mdu488

    Article  CAS  Google Scholar 

  50. Levy C, Allouache D, Lacroix J, Dugue AE, Supiot S, Campone M, Mahe M, Kichou S, Leheurteur M, Hanzen C, Dieras V, Kirova Y, Campana F, Le Rhun E, Gras L, Bachelot T, Sunyach MP, Hrab I, Geffrelot J, Gunzer K, Constans JM, Grellard JM, Clarisse B, Paoletti X (2014) REBECA: a phase I study of bevacizumab and whole-brain radiation therapy for the treatment of brain metastasis from solid tumours. Ann Oncol Off J Eur Soc Med Oncol ESMO 25(12):2351–2356. https://doi.org/10.1093/annonc/mdu465

    Article  CAS  Google Scholar 

  51. Galldiks N, Abdulla DS, Scheffler M, Wolpert F, Werner JM, Huellner MW, Stoffels G, Schweinsberg V, Schlaak M, Kreuzberg N, Landsberg J, Lohmann P, Ceccon G, Baues C, Trommer M, Celik E, Ruge MI, Kocher M, Marnitz S, Fink GR, Tonn JC, Weller M, Langen KJ, Wolf J, Mauch C (2020) Treatment monitoring of immunotherapy and targeted therapy using (18)F-FET PET in patients with melanoma and lung cancer brain metastases: initial experiences. J Nucl Med Off Publ Soc Nucl Med. https://doi.org/10.2967/jnumed.120.248278

    Article  Google Scholar 

Download references

Funding

Bayer (phase I trial, ADS), Susan G. Komen Foundation (FLT imaging, ADS), and American Society of Clinical Oncology Gianni Bonadonna Breast Cancer Research Fellowship (AM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Seidman.

Ethics declarations

Conflict of interest

ADS: research support (Novartis, Bayer, Odonate, Nektar), consulting (Genomic Health, Genentech, Novartis, Lilly, Pfizer, Odonate, Nektar, Immunomedics), speaker (Genomic Health, Genentech, Novartis, Lilly, Pfizer, Immunomedics). AM: research support (Novartis, Lilly, Takeda Millenium, Eisai/H3B Biomedicine, Seattle Genetics, Pfizer/National Comprehensive Cancer Network) and consulting (Lilly). KJ: Consultant/Advisory Board (Novartis, Spectrum pharmaceuticals, ADC Therapeutics, Pfizer, BMS, Jounce Therapeutics, Taiho Oncology, Genentech, Synthon, Abbvie, Astra Zeneca, Lilly Pharmaceuticas) and research support (Novartis, Clovis Oncology, Genentech, Astra Zeneca, ADC Therapeutics, Novita Pharmaceuticals, Debio Pharmaceuticals, Pfizer, Lilly Pharmaceuticals, Zymeworks, Immunomedics, Puma Biotechnology).

Ethical approval

The authors confirm that the study was approved by the appropriate ethics committee (Memorial Sloan Kettering Institutional Review Board) and certify that the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study according to the appropriate institutional guideline.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, A., Grkovski, M., Patil, S. et al. A phase I trial of sorafenib with whole brain radiotherapy (WBRT) in breast cancer patients with brain metastases and a correlative study of FLT-PET brain imaging. Breast Cancer Res Treat 188, 415–425 (2021). https://doi.org/10.1007/s10549-021-06209-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06209-4

Keywords

Navigation