Skip to main content

Advertisement

Log in

Body composition and breast cancer risk and treatment: mechanisms and impact

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this review is to clarify the association of body composition with breast cancer risk and treatment, including physiological mechanisms, and to elucidate strategies for overcoming unfavorable body composition changes that relate to breast cancer progression.

Methods

We have summarized updated knowledge regarding the mechanism of the negative association of altered body composition with breast cancer risk and treatment. We also review strategies for reversing unfavorable body composition based on the latest clinical trial results.

Results

Body composition changes in patients with breast cancer typically occur during menopause or as a result of chemotherapy or endocrine therapy. Dysfunction of visceral adipose tissue (VAT) in the setting of obesity underlies insulin resistance and chronic inflammation, which can lead to breast cancer development and progression. Insulin resistance and chronic inflammation are also observed in patients with breast cancer who have sarcopenia or sarcopenic obesity. Nutritional support and a personalized exercise program are the fundamental interventions for reversing unfavorable body composition. Other interventions that have been explored in specific situations include metformin, testosterone, emerging agents that directly target the adipocyte microenvironment, and bariatric surgery.

Conclusions

A better understanding of the biology of body composition phenotypes is key to determining the best intervention program for patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM (2017) Obesity and adverse breast cancer risk and outcome: mechanistic insights and strategies for intervention. CA Cancer J Clin 67(5):378–397. https://doi.org/10.3322/caac.21405

    Article  PubMed  PubMed Central  Google Scholar 

  2. Statistics NCfH (2020) FastStats disability and risk factors-obesity and overweight. https://www.cdc.gov/nchs/fastats/obesity-overweight.htm

  3. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL (2016) Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315(21):2284–2291. https://doi.org/10.1001/jama.2016.6458

    Article  CAS  PubMed  Google Scholar 

  4. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet (London, England) 371(9612):569–578. https://doi.org/10.1016/s0140-6736(08)60269-x

    Article  Google Scholar 

  5. Fontanella C, Lederer B, Gade S, Vanoppen M, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Gerber B, Hanusch C, Hilfrich J, Huober J, Schneeweiss A, Paepke S, Jackisch C, Mehta K, Nekljudova V, Untch M, Neven P, von Minckwitz G, Loibl S (2015) Impact of body mass index on neoadjuvant treatment outcome: a pooled analysis of eight prospective neoadjuvant breast cancer trials. Breast Cancer Res Treat 150(1):127–139. https://doi.org/10.1007/s10549-015-3287-5

    Article  CAS  PubMed  Google Scholar 

  6. Litton JK, Gonzalez-Angulo AM, Warneke CL, Buzdar AU, Kau SW, Bondy M, Mahabir S, Hortobagyi GN, Brewster AM (2008) Relationship between obesity and pathologic response to neoadjuvant chemotherapy among women with operable breast cancer. J Clin Oncol 26(25):4072–4077. https://doi.org/10.1200/jco.2007.14.4527

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pajares B, Pollan M, Martin M, Mackey JR, Lluch A, Gavila J, Vogel C, Ruiz-Borrego M, Calvo L, Pienkowski T, Rodriguez-Lescure A, Segui MA, Tredan O, Anton A, Ramos M, Camara Mdel C, Rodriguez-Martin C, Carrasco E, Alba E (2013) Obesity and survival in operable breast cancer patients treated with adjuvant anthracyclines and taxanes according to pathological subtypes: a pooled analysis. Breast Cancer Res 15(6):R105. https://doi.org/10.1186/bcr3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, Stumvoll M, Bluher M (2010) Insulin-sensitive obesity. Am J Phys Endocrinol Metab 299(3):E506–E515. https://doi.org/10.1152/ajpendo.00586.2009

    Article  CAS  Google Scholar 

  9. Hainer V, Aldhoon-Hainerova I (2013) Obesity paradox does exist. Diabetes Care 36(Suppl 2):S276–S281. https://doi.org/10.2337/dcS13-2023

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cleary MP, Grossmann ME (2009) Minireview: Obesity and breast cancer: the estrogen connection. Endocrinology 150(6):2537–2542. https://doi.org/10.1210/en.2009-0070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR (2008) Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes 32(6):949–958. https://doi.org/10.1038/ijo.2008.25

    Article  CAS  Google Scholar 

  12. Liedtke S, Schmidt ME, Vrieling A, Lukanova A, Becker S, Kaaks R, Zaineddin AK, Buck K, Benner A, Chang-Claude J, Steindorf K (2012) Postmenopausal sex hormones in relation to body fat distribution. Obesity (Silver Spring, Md) 20(5):1088–1095. https://doi.org/10.1038/oby.2011.383

    Article  CAS  Google Scholar 

  13. Baglietto L, Severi G, English DR, Krishnan K, Hopper JL, McLean C, Morris HA, Tilley WD, Giles GG (2010) Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. Cancer Epidemiol Biomarkers Prev 19(2):492–502. https://doi.org/10.1158/1055-9965.epi-09-0532

    Article  CAS  PubMed  Google Scholar 

  14. Lavigne JA, Goodman JE, Fonong T, Odwin S, He P, Roberts DW, Yager JD (2001) The effects of catechol-O-methyltransferase inhibition on estrogen metabolite and oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer Res 61(20):7488–7494

    CAS  PubMed  Google Scholar 

  15. Li KM, Todorovic R, Devanesan P, Higginbotham S, Kofeler H, Ramanathan R, Gross ML, Rogan EG, Cavalieri EL (2004) Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female ACI rat mammary gland in vivo. Carcinogenesis 25(2):289–297. https://doi.org/10.1093/carcin/bgg191

    Article  CAS  PubMed  Google Scholar 

  16. Bowers LW, Cavazos DA, Maximo IX, Brenner AJ, Hursting SD, deGraffenried LA (2013) Obesity enhances nongenomic estrogen receptor crosstalk with the PI3K/Akt and MAPK pathways to promote in vitro measures of breast cancer progression. Breast Cancer Res 15(4):R59. https://doi.org/10.1186/bcr3453

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354(3):270–282. https://doi.org/10.1056/NEJMra050776

    Article  CAS  PubMed  Google Scholar 

  18. Weichhaus M, Broom J, Wahle K, Bermano G (2012) A novel role for insulin resistance in the connection between obesity and postmenopausal breast cancer. Int J Oncol 41(2):745–752. https://doi.org/10.3892/ijo.2012.1480

    Article  CAS  PubMed  Google Scholar 

  19. Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, Bergman RN (2005) Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab 288(2):E454–E461. https://doi.org/10.1152/ajpendo.00203.2004

    Article  CAS  PubMed  Google Scholar 

  20. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8(12):915–928. https://doi.org/10.1038/nrc2536

    Article  CAS  PubMed  Google Scholar 

  21. Goodwin PJ, Ennis M, Pritchard KI, McCready D, Koo J, Sidlofsky S, Trudeau M, Hood N, Redwood S (1999) Adjuvant treatment and onset of menopause predict weight gain after breast cancer diagnosis. J Clin Oncol 17(1):120–129. https://doi.org/10.1200/jco.1999.17.1.120

    Article  CAS  PubMed  Google Scholar 

  22. Gordon AM, Hurwitz S, Shapiro CL, LeBoff MS (2011) Premature ovarian failure and body composition changes with adjuvant chemotherapy for breast cancer. Menopause (New York, NY) 18(11):1244–1248. https://doi.org/10.1097/gme.0b013e31821b849b

    Article  Google Scholar 

  23. Freedman RJ, Aziz N, Albanes D, Hartman T, Danforth D, Hill S, Sebring N, Reynolds JC, Yanovski JA (2004) Weight and body composition changes during and after adjuvant chemotherapy in women with breast cancer. J Clin Endocrinol Metab 89(5):2248–2253. https://doi.org/10.1210/jc.2003-031874

    Article  CAS  PubMed  Google Scholar 

  24. Sorensen JC, Cheregi BD, Timpani CA, Nurgali K, Hayes A, Rybalka E (2016) Mitochondria: inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting? Cancer Chemother Pharmacol 78(4):673–683. https://doi.org/10.1007/s00280-016-3045-3

    Article  CAS  PubMed  Google Scholar 

  25. Powers SK, Kavazis AN, DeRuisseau KC (2005) Mechanisms of disuse muscle atrophy: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 288(2):R337–R344. https://doi.org/10.1152/ajpregu.00469.2004

    Article  CAS  PubMed  Google Scholar 

  26. Tarpey MD, Amorese AJ, Balestrieri NP, Fisher-Wellman KH, Spangenburg EE (2019) Doxorubicin causes lesions in the electron transport system of skeletal muscle mitochondria that are associated with a loss of contractile function. J Biol Chem 294(51):19709–19722. https://doi.org/10.1074/jbc.RA119.008426

    Article  PubMed  PubMed Central  Google Scholar 

  27. Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M, Tonkin K, Mackey JR, Koski S, Pituskin E, Sawyer MB (2009) Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin Cancer Res 15(8):2920–2926. https://doi.org/10.1158/1078-0432.ccr-08-2242

    Article  CAS  PubMed  Google Scholar 

  28. Prado CM, Lima IS, Baracos VE, Bies RR, McCargar LJ, Reiman T, Mackey JR, Kuzma M, Damaraju VL, Sawyer MB (2011) An exploratory study of body composition as a determinant of epirubicin pharmacokinetics and toxicity. Cancer Chemother Pharmacol 67(1):93–101. https://doi.org/10.1007/s00280-010-1288-y

    Article  CAS  PubMed  Google Scholar 

  29. Sestak I, Harvie M, Howell A, Forbes JF, Dowsett M, Cuzick J (2012) Weight change associated with anastrozole and tamoxifen treatment in postmenopausal women with or at high risk of developing breast cancer. Breast Cancer Res Treat 134(2):727–734. https://doi.org/10.1007/s10549-012-2085-6

    Article  CAS  PubMed  Google Scholar 

  30. van de Velde CJ, Rea D, Seynaeve C, Putter H, Hasenburg A, Vannetzel JM, Paridaens R, Markopoulos C, Hozumi Y, Hille ET, Kieback DG, Asmar L, Smeets J, Nortier JW, Hadji P, Bartlett JM, Jones SE (2011) Adjuvant tamoxifen and exemestane in early breast cancer (TEAM): a randomised phase 3 trial. Lancet (London, England) 377(9762):321–331. https://doi.org/10.1016/s0140-6736(10)62312-4

    Article  Google Scholar 

  31. Battisti S, Guida FM, Coppa F, Vaccaro DM, Santini D, Tonini G, Zobel BB, Semelka RC (2014) Modification of abdominal fat distribution after aromatase inhibitor therapy in breast cancer patients visualized using 3-D computed tomography volumetry. Clin Breast Cancer 14(5):365–370. https://doi.org/10.1016/j.clbc.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  32. Francini G, Petrioli R, Montagnani A, Cadirni A, Campagna S, Francini E, Gonnelli S (2006) Exemestane after tamoxifen as adjuvant hormonal therapy in postmenopausal women with breast cancer: effects on body composition and lipids. Br J Cancer 95(2):153–158. https://doi.org/10.1038/sj.bjc.6603258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Londen GJ, Perera S, Vujevich K, Rastogi P, Lembersky B, Brufsky A, Vogel V, Greenspan SL (2011) The impact of an aromatase inhibitor on body composition and gonadal hormone levels in women with breast cancer. Breast Cancer Res Treat 125(2):441–446. https://doi.org/10.1007/s10549-010-1223-2

    Article  CAS  PubMed  Google Scholar 

  34. Trayhurn P, Beattie JH (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 60(3):329–339

    Article  CAS  PubMed  Google Scholar 

  35. Laforest S, Labrecque J, Michaud A, Cianflone K, Tchernof A (2015) Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit Rev Clin Lab Sci 52(6):301–313. https://doi.org/10.3109/10408363.2015.1041582

    Article  CAS  PubMed  Google Scholar 

  36. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101. https://doi.org/10.1172/jci45887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee YS, Kim JW, Osborne O, Oh DY, Sasik R, Schenk S, Chen A, Chung H, Murphy A, Watkins SM, Quehenberger O, Johnson RS, Olefsky JM (2014) Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 157(6):1339–1352. https://doi.org/10.1016/j.cell.2014.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, Wang ZV, Landskroner-Eiger S, Dineen S, Magalang UJ, Brekken RA, Scherer PE (2009) Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29(16):4467–4483. https://doi.org/10.1128/mcb.00192-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kralova Lesna I, Kralova A, Cejkova S, Fronek J, Petras M, Sekerkova A, Thieme F, Janousek L, Poledne R (2016) Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J Transl Med 14(1):208. https://doi.org/10.1186/s12967-016-0962-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Deiuliis JA, Oghumu S, Duggineni D, Zhong J, Rutsky J, Banerjee A, Needleman B, Mikami D, Narula V, Hazey J, Satoskar AR, Rajagopalan S (2014) CXCR3 modulates obesity-induced visceral adipose inflammation and systemic insulin resistance. Obesity (Silver Spring, Md) 22(5):1264–1274. https://doi.org/10.1002/oby.20642

    Article  CAS  Google Scholar 

  41. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M (2018) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. https://doi.org/10.1093/ageing/afy169

  42. Mazzuca F, Onesti CE, Roberto M, Di Girolamo M, Botticelli A, Begini P, Strigari L, Marchetti P, Muscaritoli M (2018) Lean body mass wasting and toxicity in early breast cancer patients receiving anthracyclines. Oncotarget 9(39):25714–25722. https://doi.org/10.18632/oncotarget.25394

    Article  PubMed  PubMed Central  Google Scholar 

  43. Klassen O, Schmidt ME, Ulrich CM, Schneeweiss A, Potthoff K, Steindorf K, Wiskemann J (2017) Muscle strength in breast cancer patients receiving different treatment regimes. J Cachexia Sarcopenia Muscle 8(2):305–316. https://doi.org/10.1002/jcsm.12165

    Article  PubMed  Google Scholar 

  44. Villasenor A, Ballard-Barbash R, Baumgartner K, Baumgartner R, Bernstein L, McTiernan A, Neuhouser ML (2012) Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. J Cancer Surviv 6(4):398–406. https://doi.org/10.1007/s11764-012-0234-x

    Article  PubMed  PubMed Central  Google Scholar 

  45. Arango-Lopera VE, Arroyo P, Gutierrez-Robledo LM, Perez-Zepeda MU, Cesari M (2013) Mortality as an adverse outcome of sarcopenia. J Nutr Health Aging 17(3):259–262. https://doi.org/10.1007/s12603-012-0434-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Batsis JA, Mackenzie TA, Jones JD, Lopez-Jimenez F, Bartels SJ (2016) Sarcopenia, sarcopenic obesity and inflammation: results from the 1999–2004 National Health and Nutrition Examination Survey. Clin Nutr (Edinburgh, Scotland) 35(6):1472–1483. https://doi.org/10.1016/j.clnu.2016.03.028

    Article  PubMed Central  Google Scholar 

  47. Bian AL, Hu HY, Rong YD, Wang J, Wang JX, Zhou XZ (2017) A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-alpha. Eur J Med Res 22(1):25. https://doi.org/10.1186/s40001-017-0266-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9. https://doi.org/10.1093/gerona/glu057

    Article  PubMed  Google Scholar 

  49. Beyer I, Mets T, Bautmans I (2012) Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care 15(1):12–22. https://doi.org/10.1097/MCO.0b013e32834dd297

    Article  CAS  PubMed  Google Scholar 

  50. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, Baracos VE (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 9(7):629–635. https://doi.org/10.1016/s1470-2045(08)70153-0

    Article  PubMed  Google Scholar 

  51. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3(11):1009–1013. https://doi.org/10.1038/ncb1101-1009

    Article  CAS  PubMed  Google Scholar 

  52. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106(4):473–481. https://doi.org/10.1172/jci10842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srikanthan P, Hevener AL, Karlamangla AS (2010) Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One 5(5):e10805. https://doi.org/10.1371/journal.pone.0010805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57(5):M326–M332

    Article  PubMed  Google Scholar 

  55. Al-Shanti N, Stewart CE (2012) Inhibitory effects of IL-6 on IGF-1 activity in skeletal myoblasts could be mediated by the activation of SOCS-3. J Cell Biochem 113(3):923–933. https://doi.org/10.1002/jcb.23420

    Article  CAS  PubMed  Google Scholar 

  56. Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol 105(2):473–478. https://doi.org/10.1152/japplphysiol.00006.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep 100(2):126–131

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dethlefsen C, Hansen LS, Lillelund C, Andersen C, Gehl J, Christensen JF, Pedersen BK, Hojman P (2017) Exercise-induced catecholamines activate the Hippo tumor suppressor pathway to reduce risks of breast cancer development. Cancer Res 77(18):4894–4904. https://doi.org/10.1158/0008-5472.Can-16-3125

    Article  CAS  PubMed  Google Scholar 

  59. Sturgeon K, Digiovanni L, Good J, Salvatore D, Fenderson D, Domchek S, Stopfer J, Galantino ML, Bryan C, Hwang WT, Schmitz K (2016) Exercise-induced dose-response alterations in adiponectin and leptin levels are dependent on body fat changes in women at risk for breast cancer. Cancer Epidemiol Biomarkers Prev 25(8):1195–1200. https://doi.org/10.1158/1055-9965.epi-15-1087

    Article  CAS  PubMed  Google Scholar 

  60. Ligibel JA, Campbell N, Partridge A, Chen WY, Salinardi T, Chen H, Adloff K, Keshaviah A, Winer EP (2008) Impact of a mixed strength and endurance exercise intervention on insulin levels in breast cancer survivors. J Clin Oncol 26(6):907–912. https://doi.org/10.1200/jco.2007.12.7357

    Article  CAS  PubMed  Google Scholar 

  61. Dieli-Conwright CM, Courneya KS, Demark-Wahnefried W, Sami N, Lee K, Buchanan TA, Spicer DV, Tripathy D, Bernstein L, Mortimer JE (2018) Effects of aerobic and resistance exercise on metabolic syndrome, sarcopenic obesity, and circulating biomarkers in overweight or obese survivors of breast cancer: a randomized controlled trial. J Clin Oncol 36(9):875–883. https://doi.org/10.1200/jco.2017.75.7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dieli-Conwright CM, Parmentier JH, Sami N, Lee K, Spicer D, Mack WJ, Sattler F, Mittelman SD (2018) Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Res Treat 168(1):147–157. https://doi.org/10.1007/s10549-017-4576-y

    Article  PubMed  Google Scholar 

  63. Jones LW, Kwan ML, Weltzien E, Chandarlapaty S, Sternfeld B, Sweeney C, Bernard PS, Castillo A, Habel LA, Kroenke CH, Langholz BM, Queensberry CP Jr, Dang C, Weigelt B, Kushi LH, Caan BJ (2016) Exercise and prognosis on the basis of clinicopathologic and molecular features in early-stage breast cancer: the LACE and pathways studies. Cancer Res 76(18):5415–5422. https://doi.org/10.1158/0008-5472.can-15-3307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Courneya KS, McKenzie DC, Mackey JR, Gelmon K, Friedenreich CM, Yasui Y, Reid RD, Vallerand JR, Adams SC, Proulx C, Dolan LB, Wooding E, Segal RJ (2014) Subgroup effects in a randomised trial of different types and doses of exercise during breast cancer chemotherapy. Br J Cancer 111(9):1718–1725. https://doi.org/10.1038/bjc.2014.466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Adams SC, Segal RJ, McKenzie DC, Vallerand JR, Morielli AR, Mackey JR, Gelmon K, Friedenreich CM, Reid RD, Courneya KS (2016) Impact of resistance and aerobic exercise on sarcopenia and dynapenia in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. Breast Cancer Res Treat 158(3):497–507. https://doi.org/10.1007/s10549-016-3900-2

    Article  CAS  PubMed  Google Scholar 

  66. Friedenreich CM, Neilson HK, O’Reilly R, Duha A, Yasui Y, Morielli AR, Adams SC, Courneya KS (2015) Effects of a high vs moderate volume of aerobic exercise on adiposity outcomes in postmenopausal women: a randomized clinical trial. JAMA Oncol 1(6):766–776. https://doi.org/10.1001/jamaoncol.2015.2239

    Article  PubMed  Google Scholar 

  67. van Gemert WA, Schuit AJ, van der Palen J, May AM, Iestra JA, Wittink H, Peeters PH, Monninkhof EM (2015) Effect of weight loss, with or without exercise, on body composition and sex hormones in postmenopausal women: the SHAPE-2 trial. Breast Cancer Res 17:120. https://doi.org/10.1186/s13058-015-0633-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thomson CA, Rock CL, Giuliano AR, Newton TR, Cui H, Reid PM, Green TL, Alberts DS (2005) Longitudinal changes in body weight and body composition among women previously treated for breast cancer consuming a high-vegetable, fruit and fiber, low-fat diet. Eur J Nutr 44(1):18–25. https://doi.org/10.1007/s00394-004-0487-x

    Article  PubMed  Google Scholar 

  69. Ten Haaf DSM, Eijsvogels TMH, Bongers C, Horstman AMH, Timmers S, de Groot L, Hopman MTE (2019) Protein supplementation improves lean body mass in physically active older adults: a randomized placebo-controlled trial. J Cachexia Sarcopenia Muscle 10(2):298–310. https://doi.org/10.1002/jcsm.12394

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fuchs CJ, Hermans WJH, Holwerda AM, Smeets JSJ, Senden JM, van Kranenburg J, Gijsen AP, Wodzig W, Schierbeek H, Verdijk LB, van Loon LJC (2019) Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: a double-blind, randomized trial. Am J Clin Nutr 110(4):862–872. https://doi.org/10.1093/ajcn/nqz120

    Article  PubMed  PubMed Central  Google Scholar 

  71. Verlaan S, Maier AB, Bauer JM, Bautmans I, Brandt K, Donini LM, Maggio M, McMurdo MET, Mets T, Seal C, Wijers SLJ, Sieber C, Boirie Y, Cederholm T (2018) Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults—the PROVIDE study. Clin Nutr (Edinburgh, Scotland) 37(2):551–557. https://doi.org/10.1016/j.clnu.2017.01.005

    Article  CAS  Google Scholar 

  72. Goodwin PJ, Stambolic V (2011) Obesity and insulin resistance in breast cancer—chemoprevention strategies with a focus on metformin. Breast 20(Suppl 3):S31–S35. https://doi.org/10.1016/s0960-9776(11)70291-0

    Article  PubMed  Google Scholar 

  73. Checkley LA, Rudolph MC, Wellberg EA, Giles ED, Wahdan-Alaswad RS, Houck JA, Edgerton SM, Thor AD, Schedin P, Anderson SM, MacLean PS (2017) Metformin accumulation correlates with organic cation transporter 2 protein expression and predicts mammary tumor regression in vivo. Cancer Prev Res (Phila) 10(3):198–207. https://doi.org/10.1158/1940-6207.Capr-16-0211-t

    Article  CAS  Google Scholar 

  74. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330(7503):1304–1305. https://doi.org/10.1136/bmj.38415.708634.F7

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hadad S, Iwamoto T, Jordan L, Purdie C, Bray S, Baker L, Jellema G, Deharo S, Hardie DG, Pusztai L, Moulder-Thompson S, Dewar JA, Thompson AM (2011) Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat 128(3):783–794. https://doi.org/10.1007/s10549-011-1612-1

    Article  CAS  PubMed  Google Scholar 

  76. Niraula S, Dowling RJ, Ennis M, Chang MC, Done SJ, Hood N, Escallon J, Leong WL, McCready DR, Reedijk M, Stambolic V, Goodwin PJ (2012) Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat 135(3):821–830. https://doi.org/10.1007/s10549-012-2223-1

    Article  CAS  PubMed  Google Scholar 

  77. Kalinsky K, Crew KD, Refice S, Xiao T, Wang A, Feldman SM, Taback B, Ahmad A, Cremers S, Hibshoosh H, Maurer M, Hershman DL (2014) Presurgical trial of metformin in overweight and obese patients with newly diagnosed breast cancer. Cancer Investig 32(4):150–157. https://doi.org/10.3109/07357907.2014.889706

    Article  CAS  Google Scholar 

  78. Goodwin PJ, Parulekar WR, Gelmon KA, Shepherd LE, Ligibel JA, Hershman DL, Rastogi P, Mayer IA, Hobday TJ, Lemieux J, Thompson AM, Pritchard KI, Whelan TJ, Mukherjee SD, Chalchal HI, Oja CD, Tonkin KS, Bernstein V, Chen BE, Stambolic V (2015) Effect of metformin vs placebo on and metabolic factors in NCIC CTG MA.32. J Natl Cancer Inst 107(3):djv006. https://doi.org/10.1093/jnci/djv006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Birzniece V, Umpleby MA, Poljak A, Handelsman DJ, Ho KK (2013) Oral low-dose testosterone administration induces whole-body protein anabolism in postmenopausal women: a novel liver-targeted therapy. Eur J Endocrinol 169(3):321–327. https://doi.org/10.1530/eje-13-0406

    Article  CAS  PubMed  Google Scholar 

  80. Fortner RT, Eliassen AH, Spiegelman D, Willett WC, Barbieri RL, Hankinson SE (2013) Premenopausal endogenous steroid hormones and breast cancer risk: results from the Nurses’ Health Study II. Breast Cancer Res 15(2):R19. https://doi.org/10.1186/bcr3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Key T, Appleby P, Barnes I, Reeves G (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94(8):606–616

    Article  CAS  PubMed  Google Scholar 

  82. Feng J, Li L, Zhang N, Liu J, Zhang L, Gao H, Wang G, Li Y, Zhang Y, Li X, Liu D, Lu J, Huang B (2017) Androgen and AR contribute to breast cancer development and metastasis: an insight of mechanisms. Oncogene 36(20):2775–2790. https://doi.org/10.1038/onc.2016.432

    Article  CAS  PubMed  Google Scholar 

  83. Su F, Ahn S, Saha A, DiGiovanni J, Kolonin MG (2018) Adipose stromal cell targeting suppresses prostate cancer epithelial-mesenchymal transition and chemoresistance. Oncogene. https://doi.org/10.1038/s41388-018-0558-8

  84. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement (1991) Am J Clin Nutr 9(1):1–20

  85. Andersson DP, Dahlman I, Eriksson Hogling D, Backdahl J, Toft E, Qvisth V, Naslund E, Thorell A, Ryden M, Arner P (2019) Improved metabolism and body composition beyond normal levels following gastric bypass surgery: a longitudinal study. J Intern Med 285(1):92–101. https://doi.org/10.1111/joim.12824

    Article  CAS  PubMed  Google Scholar 

  86. Feigelson HS, Caan B, Weinmann S, Leonard AC, Powers JD, Yenumula PR, Arterburn DE, Koebnick C, Altaye M, Schauer DP (2019) Bariatric surgery is associated with reduced risk of breast cancer in both premenopausal and postmenopausal women. Ann Surg. https://doi.org/10.1097/sla.0000000000003331

Download references

Acknowledgements

We thank Ms. Sunita Patterson in the Research Medical Library, MD Anderson Cancer Center, and Ms. Shraddha Subramanian in the Center for Metabolic and Degenerative Diseases, The University of Texas Health Science Center at Houston, for editorial assistance.

Funding

This work was supported by the Morgan Welch Inflammatory Breast Cancer Research Program, a State of Texas Rare and Aggressive Breast Cancer Research Program grant, National Institutes of Health/National Cancer Institute award 1R01CA205043-01A1 (to NTU), and a Harry E. Bovay, Jr. Foundation gift (to MGK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto T. Ueno.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwase, T., Wang, X., Shrimanker, T.V. et al. Body composition and breast cancer risk and treatment: mechanisms and impact. Breast Cancer Res Treat 186, 273–283 (2021). https://doi.org/10.1007/s10549-020-06092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-06092-5

Keywords

Navigation