Skip to main content

Advertisement

Log in

TRAF4, a new substrate of SIAH1, participates in chemotherapy resistance of breast cancer cell by counteracting SIAH1-mediated downregulation of β-catenin

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

TRAF4 plays an important role in the development and progression of breast cancer, but its impact on chemotherapy resistance is as yet, however, poorly understood.

Methods

Western blotting, immunoprecipitation, and immunofluorescence staining were used to identify and verify that TRAF4 was a novel substrate of SIAH1 and prevented SIAH1-mediated β-catenin degradation. Cell proliferation analysis and Flow cytometry analysis were utilized to detect TRAF4′s function on the growth-inhibitory effect of etoposide. Immunohistochemistry was used to detect the expression of TRAF4, SIAH1, and β-catenin. Statistical analysis was used to analyze the relationships between them with clinical parameters and curative effect of chemotherapy pathologically.

Results

Our results suggested that TRAF4 prevents SIAH1-mediated β-catenin degradation. TRAF4 was a novel substrate of SIAH1 and the TRAF domain of TRAF4 was critical for binding to SIAH1. TRAF4 reduced the growth-inhibitory effect of etoposide via reducing the number of S-phase cells and suppressing cell apoptosis. Concordantly, we found that breast cancer patients with a low-TRAF4 expression benefited most from chemotherapy, who had higher tumor volume reduction rate and better pathological response, while, the high-TRAF4 expression group had lower tumor volume reduction rate and poor pathological response.

Conclusions

TRAF4 was a novel substrate of SIAH1 and prevented SIAH1-mediated β-catenin degradation, which explains the protective effect of TRAF4 on β-catenin during cell stress and links TRAF4 to chemotherapy resistance in tumors. These findings implicated a novel pathway for the oncogenic function of TRAF4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TRAFs:

Tumor necrosis factor receptor associated factors

SIAH1:

Seven in absentia homolog

NF-kB:

Nuclear factor kappaB

JNK:

C-Jun N-terminal kinase

TNFR:

Tumor necrosis factor receptor

GIRT:

Glucocorticoid-induced TNFR

p70s6k:

70 KDa ribosomal protein S6 kinase

Tcf/LEF:

T cell factor/lymphoid enhancer factor

References

  1. Bodai BI, Tuso P (2015) Breast cancer survivorship: a comprehensive review of long-term medical issues and lifestyle recommendations. Perm J 19:48–79

    Article  Google Scholar 

  2. Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD et al (2014) Breast cancer in China. Lancet Oncol 15:279–289

    Article  Google Scholar 

  3. Lawrence J, Cameron D, Argyle D (2015) Species differences in tumour responses to cancer chemotherapy. Philos Trans R Soc Lond B Biol Sci 370:20140233

    Article  Google Scholar 

  4. Masoud V, Pagès G (2017) Targeted therapies in breast cancer: New challenges to fight against resistance. World J Clin Oncol 8:120–134

    Article  Google Scholar 

  5. Esparza EM, Arch RH (2004) TRAF4 functions as anntermediate of GITR-induced NF-kappaB activation. Cell Mol Life Sci 61:3087–3092

    Article  CAS  Google Scholar 

  6. Yamamoto H, Ryu J, Min E, Oi N, Bai R, Zykova TA et al (2017) TRAF1 is critical for DMBA/solar UVR-induced skin carcinogenesis. J Invest Dermatol 137:1322–1332

    Article  CAS  Google Scholar 

  7. Regnier CH, Tomasetto C, Moog-Lutz C, Chenard MP, Wendling C, Basset P et al (1995) Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 270:25715–25721

    Article  CAS  Google Scholar 

  8. Camilleri-Broet S, Cremer I, Marmey B, Comperat E, Viguie F, Audouin J et al (2007) TRAF4 overexpression is a common characteristic of human carcinomas. Oncogene 26:142–147

    Article  CAS  Google Scholar 

  9. Zhang L, Zhou F, GarcíadeVinuesa A, deKruijf EM, Mesker WE, Hui L et al (2013) TRAF4 promotes TGF-β receptor signaling and drives breast cancer metastasis. Mol Cell 51:559–572

    Article  CAS  Google Scholar 

  10. Ren HY, Wang J, Yang F, Zhang XL, Wang AL, Sun LL et al (2015) Cytoplasmic TRAF4 contributes to the activation of p70s6k signaling pathway in breast cancer. Oncotarget 6:4080–4096

    Article  Google Scholar 

  11. MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dve Cell 17:9–26

    Article  CAS  Google Scholar 

  12. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  Google Scholar 

  13. Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol Cell 7:915–926

    Article  CAS  Google Scholar 

  14. Carthew RW, Rubin GM (1990) Seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell 63:561–577

    Article  CAS  Google Scholar 

  15. House CM, Ler A, Bowtell DD (2009) Siah proteins: novel drug targets in the Ras and hypoxia pathways. Cancer Res 69:8835–8838

    Article  CAS  Google Scholar 

  16. Krer OH, Stauber RH, Bug G, Hartkamp J, Knauer SK (2013) SIAH proteins: Critical roles in leukemogenesis. Leukemia 27:792–802

    Article  Google Scholar 

  17. Hu G, Chung YL, Glover T, Valentine V, Look AT, Fearon ER (1997) Characterization of human homologs of the Drosophila seven in absentia (sina) gene. Genomics 46:103–111

    Article  CAS  Google Scholar 

  18. Tang AH, Neufeld TP, Kwan E, Rubin GM (1997) PHYL acts to down-regulate TTK88, a transcriptional repressor of neuronal cell fates, by a SINA-dependent mechanism. Cell 90:459–467

    Article  CAS  Google Scholar 

  19. Wu H, Lin Y, Shi Y, Qian W, Tian Z, Yu Y et al (2010) SIAH-1 interacts with mammalian polyhomeotic homologues HPH2 and affects its stability via the ubiquitin-proteasome pathway. Biochem Biophys Res Commun 397:391–396

    Article  CAS  Google Scholar 

  20. Venables JP, Dalgliesh C, Paronetto MP, Skitt L, Thornton JK, Saunders PT et al (2004) SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet 13:1525–1534

    Article  CAS  Google Scholar 

  21. Nagano Y, Fukushima T, Okemoto K, Tanaka K, Bowtell DD, Ronai Z et al (2011) Siah1/SIP regulates p27(kip1) stability and cell migration under metabolic stress. Cell Cycle 10:2592–2602

    Article  CAS  Google Scholar 

  22. Fukushima T, Zapata JM, Singha NC, Thomas M, Kress CL, Krajewska M et al (2006) Critical function for SIP, a ubiquitin E3 ligase component of the β-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 24:29–39

    Article  CAS  Google Scholar 

  23. Dimitrova YN, Li J, Lee YT, Rios-Esteves J, Friedman DB, Choi HJ et al (2010) Direct ubiquitination of β-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem 285:13507–13516

    Article  CAS  Google Scholar 

  24. Ji L, Jiang B, Jiang X, Charlat O, Chen A, Mickanin C et al (2017) The SIAH E3 ubiquitin ligases promote Wnt/ β-catenin signaling through mediating Wnt-induced Axin degradation. Genes Dev 31:904–915

    Article  CAS  Google Scholar 

  25. Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–172

    Article  CAS  Google Scholar 

  26. Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537

    Article  CAS  Google Scholar 

  27. Rozan LM, El-Deiry WS (2006) Identification and characterization of proteins interacting with Traf4, an enigmatic p53 target. Cancer Biol Ther 5:1228–1235

    Article  CAS  Google Scholar 

  28. Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7:927–936

    Article  CAS  Google Scholar 

  29. Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7:915–926

    Article  CAS  Google Scholar 

  30. Polekhina G, House CM, Traficante N, Mackay JP, Relaix F, Sassoon DA et al (2002) Siah ubiquitin ligase is structurally related to TRAF and modulates TNF- alpha signaling. Nat Struct Biol 9:68–75

    Article  CAS  Google Scholar 

  31. Habelhah H, Frew IJ, Laine A, Janes PW, Relaix F, Sassoon D et al (2002) Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO J 21:5756–5765

    Article  CAS  Google Scholar 

  32. Nadeau RJ, Toher JL, Yang X, Kovalenko D, Friesel R (2007) Regulation of Sprouty2 stability by mammalian seven-in-absentia homolog 2. J Cell Biochem 100:151–160

    Article  CAS  Google Scholar 

  33. Niu F, Ru H, Ding W, Ouyang S, Liu ZJ (2013) Structural biology study of human TNF receptor associated factor 4 TRAF domain. Protein Cell 4:687–694

    Article  CAS  Google Scholar 

  34. Yoon JH, Cho YJ, Park HH (2014) Structure of the TRAF4 TRAF domain with a coiled-coil domain and its implications for the TRAF4 signalling pathway. Acta Crystallogr D Biol Crystallogr 70:2–10

    Article  CAS  Google Scholar 

  35. Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692

    Article  CAS  Google Scholar 

  36. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B et al (2009) The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325:1134–1138

    Article  CAS  Google Scholar 

  37. Li W, Peng C, Lee MH, Lim D, Zhu F, Fu Y et al (2013) TRAF4 is a critical molecule for Akt activation in lung cancer. Cancer Res 73:6938–6950

    Article  CAS  Google Scholar 

  38. Bradley JR, Pober JS (2001) Tumor necrosis factor receptor associated factors (TRAFs). Oncogene 20:6482–6491

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bert W. O’Malley (Baylor College of Medicine) for kindly providing the Flag-ΔZn TRAF4 expression vector. We thank Dr Min Song (China Medical University) for kindly providing the wild-type SIAH1 and ΔR-SIAH1 plasmids.

Funding

This study was funded by National Natural Science Foundation of China, Grant Number 81803011.

Author information

Authors and Affiliations

Authors

Contributions

All authors meet the authorship requirements. Huayan Ren participated in the design of the study, drafted the manuscript and performed the experiments. Xiaoyi Mi, Pengyuan Zhao, Xueyan Zhao, Na Wei, Huifen Huang, Zhongqin Meng, Junna Kou, Xueliang Fan analyzed the data and performed the statistical analysis. Hongyan Zhang, Jianping Yang, and Wencai Li prepared the figures. Huixiang Li conceived and designed the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huixiang Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Mi, X., Zhao, P. et al. TRAF4, a new substrate of SIAH1, participates in chemotherapy resistance of breast cancer cell by counteracting SIAH1-mediated downregulation of β-catenin. Breast Cancer Res Treat 183, 275–289 (2020). https://doi.org/10.1007/s10549-020-05789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05789-x

Keywords

Navigation