Skip to main content

Advertisement

Log in

Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Recent studies have emphasized a key role for the anti-apoptotic Bcl-2 family member Mcl-1 in conferring tumor cell survival and drug resistance in breast cancer (BC). Mcl-1 inhibitors, such as the BH3-mimetic EU-5346, therefore represent an exciting new class of targeting agents and are a current focus of widespread cancer-drug development efforts.

Methods

ONCOMINE analysis was utilized to compare expression profiles of Bcl-2 family members across all major BC subgroups. Potential toxicities of EU-5346 were evaluated using iPS-generated cardiomyocytes, blood cells and astrocytes. The anti-BC cell activity of EU-5346-based therapies was evaluated using [3H]-thymidine uptake and spheroid-forming assays as well as immunoblotting and the Chou-Talalay method. Protein level-based activity of EU-5346, the specific anti-Bcl-2 inhibitor ABT-199 and the specific anti-Bcl-xL inhibitor WEHI-539 was verified in Mcl-1Δ/null versus Mcl-1wt/wt MEFs.

Results

We previously demonstrated significant anti-tumor activity of EU-5346 in all BC subtypes. Our present results go further and suggest that EU-5346 may induce limited adverse events such as cardiotoxicity, hematotoxicity, and neurotoxicity, frequently observed with other BH3 mimetics. As demonstrated by our mathematical scoring model, the prediction of EU-5643-induced IC50 not only relies on the protein level of Mcl-1 but also on Bak, Bim, and Noxa. Synergistic anti-BC activity of low-dose EU-5346 with the BH3 mimetics ABT-199 or WEHI-539 was observed only in those BC cells expressing Bcl-2 or Bcl-xL, respectively. Similarly, when combined with tamoxifen or trastuzumab, low-dose EU-5346 induced significant anti-BC activity in hormone receptor positive or Her2-positive BC cells, respectively. Finally, EU-5346 in combination with paclitaxel induced synergistic anti-BC activity in both paclitaxel-sensitive and paclitaxel-resistant TNBC cells.

Conclusion

These data strongly support the further clinical development of EU-5346 to improve BC patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

TN:

Triple negative

MOMP:

Mitochondrial outer membrane permeabilization

Mcl-1:

Myeloid cell leukemia-1

BH3:

Bcl-2 homology 3

TCGA:

The Cancer Genome Atlas (TCGA)

HR:

Hormone receptor

iPS:

Induced pluripotent stem cell

MEFs:

Murine embryonic fibroblasts

PBMCs:

Peripheral blood mononuclear cells

References

  1. Network TCGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70. https://doi.org/10.1038/nature11412

    Article  CAS  Google Scholar 

  2. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337. https://doi.org/10.1038/sj.onc.1210220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vogler M, Dinsdale D, Dyer MJS, Cohen GM (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16:360–367. https://doi.org/10.1038/cdd.2008.137

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  PubMed  CAS  Google Scholar 

  5. Montero J, Letai A (2018) Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Diff 25:56–64. https://doi.org/10.1038/cdd.2017.183

    Article  CAS  Google Scholar 

  6. Thomas LW, Lam C, Edwards SW (2010) Mcl-1; the molecular regulation of protein function. FEBS Lett 584:2981–2989. https://doi.org/10.1016/j.febslet.2010.05.061

    Article  PubMed  CAS  Google Scholar 

  7. Germain M, Duronio V (2007) The N terminus of the anti-apoptotic BCL-2 homologue MCL-1 regulates its localization and function. J Biol Chem 282:32233–32242. https://doi.org/10.1074/jbc.M706408200

    Article  PubMed  CAS  Google Scholar 

  8. Yang T, Kozopas KM, Craig RW (1995) The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol 128:1173–1184

    Article  PubMed  CAS  Google Scholar 

  9. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  10. Del Gaizo Moore V, Letai A (2013) BH3 profiling–measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett 332:202–205. https://doi.org/10.1016/j.canlet.2011.12.021

    Article  PubMed  CAS  Google Scholar 

  11. Oda E, Ohki R, Murasawa H et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    Article  PubMed  CAS  Google Scholar 

  12. Wei G, Margolin AA, Haery L et al (2012) Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell 21:547–562. https://doi.org/10.1016/j.ccr.2012.02.028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Beroukhim R, Mermel CH, Porter D et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905. https://doi.org/10.1038/nature08822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Leverson JD, Phillips DC, Mitten MJ et al (2015) Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med 7:279ra40. https://doi.org/10.1126/scitranslmed.aaa4642

    Article  PubMed  CAS  Google Scholar 

  15. Leverson JD, Zhang H, Chen J et al (2015) Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis 6:e1590. https://doi.org/10.1038/cddis.2014.561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Abulwerdi F, Liao C, Liu M et al (2014) A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 13:565–575. https://doi.org/10.1158/1535-7163.MCT-12-0767

    Article  PubMed  CAS  Google Scholar 

  17. Kotschy A, Szlavik Z, Murray J et al (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538:477–482. https://doi.org/10.1038/nature19830

    Article  PubMed  CAS  Google Scholar 

  18. Belmar J, Fesik SW (2015) Small molecule Mcl-1 inhibitors for the treatment of cancer. Pharmacol Ther 145:76–84. https://doi.org/10.1016/j.pharmthera.2014.08.003

    Article  PubMed  CAS  Google Scholar 

  19. Nguyen M, Marcellus RC, Roulston A et al (2007) Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis. Proc Natl Acad Sci USA 104:19512–19517. https://doi.org/10.1073/pnas.0709443104

    Article  PubMed  Google Scholar 

  20. Richard DJ, Lena R, Bannister T et al (2013) Hydroxyquinoline-derived compounds and analoguing of selective Mcl-1 inhibitors using a functional biomarker. Bioorg Med Chem 21:6642–6649. https://doi.org/10.1016/j.bmc.2013.08.017

    Article  PubMed  CAS  Google Scholar 

  21. Bashari MH, Fan F, Vallet S et al (2016) Mcl-1 confers protection of Her2-positive breast cancer cells to hypoxia: therapeutic implications. Breast Cancer Res 18:26. https://doi.org/10.1186/s13058-016-0686-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ding Q, He X, Hsu J-M et al (2007) Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol 27:4006–4017. https://doi.org/10.1128/MCB.00620-06

    Article  PubMed  CAS  Google Scholar 

  23. Campbell KJ, Dhayade S, Ferrari N et al (2018) MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis 9:19. https://doi.org/10.1038/s41419-017-0035-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Williams MM, Lee L, Hicks DJ et al (2017) Key survival factor, Mcl-1, correlates with sensitivity to combined Bcl-2/Bcl-xL blockade. Mol Cancer Res 15:259–268. https://doi.org/10.1158/1541-7786.MCR-16-0280-T

    Article  PubMed  CAS  Google Scholar 

  25. Merino D, Whittle JR, Vaillant F et al (2017) Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci Transl Med 9:eaam7049. https://doi.org/10.1126/scitranslmed.aam7049

    Article  PubMed  CAS  Google Scholar 

  26. Wertz IE, Kusam S, Lam C et al (2011) Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471:110–114. https://doi.org/10.1038/nature09779

    Article  PubMed  CAS  Google Scholar 

  27. Placzek WJ, Wei J, Kitada S et al (2010) A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis 1:e40. https://doi.org/10.1038/cddis.2010.18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Booy EP, Henson ES, Gibson SB (2011) Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer. Oncogene 30:2367–2378. https://doi.org/10.1038/onc.2010.616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. van Delft MF, Wei AH, Mason KD et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–399. https://doi.org/10.1016/j.ccr.2006.08.027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681. https://doi.org/10.1038/nature03579

    Article  PubMed  CAS  Google Scholar 

  31. Tse C, Shoemaker AR, Adickes J et al (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428. https://doi.org/10.1158/0008-5472.CAN-07-5836

    Article  PubMed  CAS  Google Scholar 

  32. Opferman JT, Letai A, Beard C et al (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426:671–676

    Article  PubMed  CAS  Google Scholar 

  33. Podar K, Gouill SL, Zhang J et al (2008) A pivotal role for Mcl-1 in bortezomib-induced apoptosis. Oncogene 27:721–731

    Article  PubMed  CAS  Google Scholar 

  34. Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al (2007) Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 9:166–180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. https://doi.org/10.1016/j.cell.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  36. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324. https://doi.org/10.1038/nprot.2008.226

    Article  PubMed  CAS  Google Scholar 

  37. Chou T-C (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

    Article  PubMed  CAS  Google Scholar 

  38. Bannister T, Koenig M, He Y, Mishra J, Spicer T, Minond D, Saldanha A, Mercer BA, Cameron M, Lena R, Carlson N, Richard D, Cardone MHP (2013) ML311: A Small Molecule that Potently and Selectively Disrupts the Protein-Protein Interaction of Mcl-1 and Bim: A Probe for Studying Lymphoid Tumo… In: Probe Reports from NIH Mol. Libr. Progr. [Internet]. Bethesda Natl. Cent. Biotechnol. Inf. http://www.ncbi.nlm.nih.gov/pubmed/23762927. Accessed 8 Jun 2015

  39. Wang X, Bathina M, Lynch J et al (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 27:1351–1364. https://doi.org/10.1101/gad.215855.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nikhil K, Shah K (2017) The Cdk5-Mcl-1 axis promotes mitochondrial dysfunction and neurodegeneration in a model of Alzheimer’s disease. J Cell Sci 130:3023–3039. https://doi.org/10.1242/jcs.205666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Perciavalle RM, Stewart DP, Koss B et al (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14:575–583. https://doi.org/10.1038/ncb2488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Goodwin CM, Rossanese OW, Olejniczak ET, Fesik SW (2015) Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Diff 22:2098–2106. https://doi.org/10.1038/cdd.2015.73

    Article  CAS  Google Scholar 

  43. Zhang Z, Liu Y, Song T et al (2013) An antiapoptotic Bcl-2 family protein index predicts the response of leukaemic cells to the pan-Bcl-2 inhibitor S1. Br J Cancer 108:1870–1878. https://doi.org/10.1038/bjc.2013.152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Deng J, Carlson N, Takeyama K et al (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12:171–185. https://doi.org/10.1016/j.ccr.2007.07.001

    Article  PubMed  CAS  Google Scholar 

  45. Wei S-H, Dong K, Lin F et al (2008) Inducing apoptosis and enhancing chemosensitivity to gemcitabine via RNA interference targeting Mcl-1 gene in pancreatic carcinoma cell. Cancer Chemother Pharmacol 62:1055–1064. https://doi.org/10.1007/s00280-008-0697-7

    Article  PubMed  CAS  Google Scholar 

  46. Konopleva M, Contractor R, Tsao T et al (2006) Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10:375–388. https://doi.org/10.1016/j.ccr.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  47. Goldsmith KC, Lestini BJ, Gross M et al (2010) BH3 response profiles from neuroblastoma mitochondria predict activity of small molecule Bcl-2 family antagonists. Cell Death Differ 17:872–882. https://doi.org/10.1038/cdd.2009.171

    Article  PubMed  CAS  Google Scholar 

  48. Morales AA, Kurtoglu M, Matulis SM et al (2011) Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood 118:1329–1339. https://doi.org/10.1182/blood-2011-01-327197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Al-Harbi S, Hill BT, Mazumder S et al (2011) An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood 118:3579–3590. https://doi.org/10.1182/blood-2011-03-340364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Goodwin CM, Rossanese OW, Olejniczak ET, Fesik SW (2015) Myeloid cell leukemia-1 is an important apoptotic survival factor in triple-negative breast cancer. Cell Death Differ. https://doi.org/10.1038/cdd.2015.73

    Article  PubMed  PubMed Central  Google Scholar 

  51. Balko JM, Giltnane JM, Wang K et al (2014) Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov 4:232–245. https://doi.org/10.1158/2159-8290.CD-13-0286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

SM is the recipient of a DGHO/ Jose Carreras stipend. KP is the recipient of a B. Braun Stiftungs Grant. MP and KP received research support from Roche Pharmaceuticals. We cordially thank Muhammad Hasan Bashari for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

SV conceived of the study, designed experiments, analyzed data, and wrote the manuscript. FF and SM performed experiments and participated in data analysis and interpretation. MS, JTO and MHC conceived of the study and participated in data analysis and interpretation. MP, AS and DJ made substantial contributions to the acquisition and interpretation of data. KP conceived of the study, designed and coordinated experiments, analyzed and interpreted data and wrote the manuscript. All authors were involved in revising the manuscript critically for important intellectual content. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Klaus Podar.

Ethics declarations

Conflict of interest

KP received speaker honorarium from Celgene, Janssen, and Amgen. MP and KP received research support from Roche Pharmaceuticals. JTO received consultant honorarium and research support from AbbVie. DJ received consultant honorarium from Bayer, Amgen, MSD, CureVac, Roche, BMS. MHC is the co-funder, president and CEO of Eutropics, Inc. The remaining authors declare no conflict of interest.

Ethical approval

This study complied with current laws of Germany, Austria and USA. The collection and use of primary cells has been approved by the Ethics committee of the Medical Faculty, University of Heidelberg (Approval Number 022/2013).

Informed consent

Informed consent was obtained in accordance with the Declaration of Helsinki. This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 167 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallet, S., Fan, F., Malvestiti, S. et al. Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer. Breast Cancer Res Treat 173, 585–596 (2019). https://doi.org/10.1007/s10549-018-5022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-5022-5

Keywords

Navigation