Skip to main content

Advertisement

Log in

A qualitative transcriptional signature to reclassify estrogen receptor status of breast cancer patients

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Immunohistochemistry (IHC) assessment of the estrogen receptor (ER) status has low consensus among pathologists. Quantitative transcriptional signatures are highly sensitive to the measurement variation and sample quality. Here, we developed a robust qualitative signature, based on within-sample relative expression orderings (REOs) of genes, to reclassify ER status.

Methods

From the gene pairs with significantly stable REOs in ER+ samples and reversely stable REOs in ER− samples, concordantly identified from four datasets, we extracted a signature to determine a sample’s ER status through evaluating whether the REOs within the sample significantly match with the ER+ REOs or the ER− REOs.

Results

A signature with 112 gene pairs was extracted. It was validated through evaluating whether the reclassified ER+ or ER− patients could benefit from tamoxifen therapy or neoadjuvant chemotherapy. In three datasets for IHC-determined ER+ patients treated with post-operative tamoxifen therapy, 11.6–12.4% patients were reclassified as ER− by the signature and, as expected, they had significantly worse recurrence-free survival than the ER+ patients confirmed by the signature. On another hand, in two datasets for IHC-determined ER− patients treated with neoadjuvant chemotherapy, 18.8 and 7.8% patients were reclassified as ER+ and, as expected, their pathological complete response rate was significantly lower than that of the other ER− patients confirmed by the signature.

Conclusions

The REO-based signature can provide an objective assessment of ER status of breast cancer patients and effectively reduce misjudgments of ER status by IHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ER:

Estrogen receptor

IHC:

Immunohistochemical

REO:

Relative expression ordering

pCR:

Pathological complete response

RD:

Residual disease

GEO:

Gene expression omnibus

RMA:

Robust multichip average algorithm

RFS:

Relapse-free survival

HR:

Hazard ratio

CI:

Confidence interval

FDR:

False discovery rate

References

  1. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Available from: https://www.cancer.org/cancer/breast-cancer.html

  3. Gancberg D, Jarvinen T, di Leo A et al (2002) Evaluation of HER-2/NEU protein expression in breast cancer by immunohistochemistry: an interlaboratory study assessing the reproducibility of HER-2/NEU testing. Breast Cancer Res Treat 74(2):113–120

    Article  PubMed  CAS  Google Scholar 

  4. Diaz LK, Sahin A, Sneige N (2004) Interobserver agreement for estrogen receptor immunohistochemical analysis in breast cancer: a comparison of manual and computer-assisted scoring methods. Ann Diagn Pathol 8(1):23–27

    Article  PubMed  Google Scholar 

  5. Kirkegaard T, Edwards J, Tovey S et al (2006) Observer variation in immunohistochemical analysis of protein expression, time for a change? Histopathology 48(7):787–794

    Article  PubMed  CAS  Google Scholar 

  6. Arihiro K, Umemura S, Kurosumi M et al (2007) Comparison of evaluations for hormone receptors in breast carcinoma using two manual and three automated immunohistochemical assays. Am J Clin Pathol 127(3):356–365

    Article  PubMed  Google Scholar 

  7. Press MF, Slamon DJ, Flom KJ et al (2002) Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol 20(14):3095–3105

    Article  PubMed  CAS  Google Scholar 

  8. Fitzgibbons PL, Murphy DA, Hammond ME et al (2010) Recommendations for validating estrogen and progesterone receptor immunohistochemistry assays. Arch Pathol Lab Med 134(6):930–935

    PubMed  CAS  Google Scholar 

  9. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16):2784–2795

    Article  PubMed  PubMed Central  Google Scholar 

  10. Orlando L, Viale G, Bria E et al (2016) Discordance in pathology report after central pathology review: implications for breast cancer adjuvant treatment. Breast 30:151–155

    Article  PubMed  Google Scholar 

  11. Dubowitz V (1991) A new muscle journal for the nineties. Neuromuscul Disord: NMD 1(1):1–2

    Article  PubMed  CAS  Google Scholar 

  12. Sheffield BS, Kos Z, Asleh-Aburaya K et al (2016) Molecular subtype profiling of invasive breast cancers weakly positive for estrogen receptor. Breast Cancer Res Treat 155(3):483–490

    Article  PubMed  CAS  Google Scholar 

  13. Gong Y, Yan K, Lin F et al (2007) Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study. Lancet Oncol 8(3):203–211

    Article  PubMed  CAS  Google Scholar 

  14. Badve SS, Baehner FL, Gray RP et al (2008) Estrogen- and progesterone-receptor status in ECOG 2197: comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory. J Clin Oncol 26(15):2473–2481

    Article  PubMed  Google Scholar 

  15. Roepman P, Horlings HM, Krijgsman O et al (2009) Microarray-based determination of estrogen receptor, progesterone receptor, and HER2 receptor status in breast cancer. Clin Cancer Res 15(22):7003–7011

    Article  PubMed  CAS  Google Scholar 

  16. Du X, Li XQ, Li L et al (2013) The detection of ESR1/PGR/ERBB2 mRNA levels by RT-QPCR: a better approach for subtyping breast cancer and predicting prognosis. Breast Cancer Res Treat 138(1):59–67

    Article  PubMed  CAS  Google Scholar 

  17. Tramm T, Hennig G, Kyndi M et al (2013) Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection. Virchows Archiv 463(6):775–786

    Article  PubMed  CAS  Google Scholar 

  18. Wilson TR, Xiao Y, Spoerke JM et al (2014) Development of a robust RNA-based classifier to accurately determine ER, PR, and HER2 status in breast cancer clinical samples. Breast Cancer Res Treat 148(2):315–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Consortium M, Shi L, Reid LH et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24(9):1151–1161

  20. Gazdar AF, Schiller JH (2011) Predictive and prognostic factors for non-small cell lung cancer–potholes in the road to the promised land. J Natl Cancer Inst 103(24):1810–1811

    Article  PubMed  Google Scholar 

  21. Qi L, Chen L, Li Y et al (2016) Critical limitations of prognostic signatures based on risk scores summarized from gene expression levels: a case study for resected stage I non-small-cell lung cancer. Brief Bioinform 17(2):233–242

    Article  PubMed  Google Scholar 

  22. Lu X, Lu X, Wang ZC et al (2008) Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 108(2):191–201

    Article  PubMed  CAS  Google Scholar 

  23. Wang D, Cheng L, Wang M et al (2011) Extensive increase of microarray signals in cancers calls for novel normalization assumptions. Comput Biol Chem 35(3):126–130

    Article  PubMed  CAS  Google Scholar 

  24. Nygaard V, Rodland EA, Hovig E (2016) Methods that remove batch effects while retaining group differences may lead to exaggerated confidence in downstream analyses. Biostatistics 17(1):29–39

    PubMed  Google Scholar 

  25. Eddy JA, Sung J, Geman D et al (2010) Relative expression analysis for molecular cancer diagnosis and prognosis. Technol Cancer Res Treat 9(2):149–159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Patil P, Bachant-Winner PO, Haibe-Kains B et al (2015) Test set bias affects reproducibility of gene signatures. Bioinformatics 31(14):2318–2323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cheng J, Guo Y, Gao Q et al (2017) Circumvent the uncertainty in the applications of transcriptional signatures to tumor tissues sampled from different tumor sites. Oncotarget 8(18):30265–30275

    PubMed  PubMed Central  Google Scholar 

  28. Chen R, Guan Q, Cheng J et al (2017) Robust transcriptional tumor signatures applicable to both formalin-fixed paraffin-embedded and fresh-frozen samples. Oncotarget 8(4):6652–6662

    PubMed  Google Scholar 

  29. Liu H, Li Y, He J et al (2017) Robust transcriptional signatures for low-input RNA samples based on relative expression orderings. BMC Genom 18(1):913

    Article  Google Scholar 

  30. Ao L, Song X, Li X et al (2016) An individualized prognostic signature and multiomics distinction for early stage hepatocellular carcinoma patients with surgical resection. Oncotarget 7(17):24097–24110

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li X, Cai H, Zheng W et al (2016) An individualized prognostic signature for gastric cancer patients treated with 5-Fluorouracil-based chemotherapy and distinct multi-omics characteristics of prognostic groups. Oncotarget 7(8):8743–8755

    PubMed  PubMed Central  Google Scholar 

  32. Qi L, Li T, Shi G et al (2017) An individualized gene expression signature for prediction of lung adenocarcinoma metastases. Mol Oncol 11(11):1630–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Guan Q, Chen R, Yan H et al (2016) Differential expression analysis for individual cancer samples based on robust within-sample relative gene expression orderings across multiple profiling platforms. Oncotarget 7(42):68909–68920

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mouttet D, Lae M, Caly M et al (2016) Estrogen-receptor, progesterone-receptor and HER2 status determination in invasive breast cancer. Concordance between immuno-histochemistry and MapQuant microarray based assay. PLoS ONE 11(2):e0146474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wesseling J, Tinterri C, Sapino A et al (2016) An international study comparing conventional versus mRNA level testing (TargetPrint) for ER, PR, and HER2 status of breast cancer. Virchows Archiv 469(3):297–304

    Article  PubMed  CAS  Google Scholar 

  36. Viale G, de Snoo FA, Slaets L et al (2017) Immunohistochemical versus molecular (BluePrint and MammaPrint) subtyping of breast carcinoma. Outcome results from the EORTC 10041/BIG 3-04 MINDACT trial. Breast Cancer Res Treat

  37. Early Breast Cancer Trialists’ Collaborative G, Davies C, Godwin J et al (2011) Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378(9793):771–784

  38. Hackshaw A, Roughton M, Forsyth S et al (2011) Long-term benefits of 5 years of tamoxifen: 10-year follow-up of a large randomized trial in women at least 50 years of age with early breast cancer. J Clin Oncol 29(13):1657–1663

    Article  PubMed  Google Scholar 

  39. Blamey RW, Bates T, Chetty U et al (2013) Radiotherapy or tamoxifen after conserving surgery for breast cancers of excellent prognosis: British Association of Surgical Oncology (BASO) II trial. Eur J Cancer 49(10):2294–2302

    Article  PubMed  CAS  Google Scholar 

  40. Davies C, Pan H, Godwin J et al (2013) Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381(9869):805–816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guarneri V, Broglio K, Kau SW et al (2006) Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol 24(7):1037–1044

    Article  PubMed  Google Scholar 

  42. Kaufmann M, von Minckwitz G, Smith R et al (2003) International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol 21(13):2600–2608

    Article  PubMed  Google Scholar 

  43. Irizarry RA, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  44. Bahn AK (1969) Application of binomial distribution to medicine: comparison of one sample proportion to an expected proportion (for small samples). Evaluation of a new treatment. Evaluation of a risk factor. J Am Med Women’s Assoc 24(12):957–966

    CAS  Google Scholar 

  45. Schweder T, Spjøtvoll E (1982) A class of rank test procedures for censored survival data. Biometrika 69(3):553–566

  46. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300

    Google Scholar 

  47. National Comprehensive Cancer Network. Available from: https://www.nccn.org/professionals/physician_gls/default.aspx

  48. Yi M, Huo L, Koenig KB et al (2014) Which threshold for ER positivity? A retrospective study based on 9639 patients. Ann Oncol 25(5):1004–1011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by Grants from the National Natural Science Foundation of China (Grant No. 81202101, 81172531, 61602119, and 30930038) and the Joint Technology Innovation Fund of Fujian Province (Grant number: 2016Y9044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Guo or Jing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Guo, W., Zhang, S. et al. A qualitative transcriptional signature to reclassify estrogen receptor status of breast cancer patients. Breast Cancer Res Treat 170, 271–277 (2018). https://doi.org/10.1007/s10549-018-4758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4758-2

Keywords

Navigation