Skip to main content

Advertisement

Log in

A high-risk 70-gene signature is not associated with the detection of tumor cell dissemination to the bone marrow

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The 70-gene signature (70-GS) is a prognostic tool, grouping patients in risk groups to assess their need for adjuvant chemotherapy. Tumor cell dissemination to the bone marrow is a marker of minimal residual disease and associated with impaired survival. In this study, we aimed to evaluate whether 70-GS is associated with the presence of disseminated tumor cells (DTCs) in the bone marrow of patients with early breast cancer.

Methods

In patients with hormone receptor-positive HER2-negative early breast cancer, the 70-GS was obtained and the presence of DTCs was immunohistochemically evaluated using cytokeratin staining with the A45-B/B3 antibody.

Results

149 patients were included into the analysis. 40 (27%) had a high-risk 70-GS and 35 (23%) had detectable DTCs in their bone marrow. 9 (22%) of the 40 patients with high-risk 70-GS and 26 (24%) of the 109 patients with a low-risk 70-GS were positive for DTCs (p = 0.863).

Conclusions

As both 70-GS and DTC detection are known prognostic factors but do not seem to correlate, a follow-up on a larger cohort is warranted to evaluate if a combination of the two is able to better stratify the relapse risk in early breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hosseini H, Obradović MMS, Hoffmann M et al (2016) Early dissemination seeds metastasis in breast cancer. Nature. https://doi.org/10.1038/nature20785

    PubMed Central  Google Scholar 

  2. Olivotto IA, Bajdik CD, Ravdin PM et al (2005) Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 23:2716–2725. https://doi.org/10.1200/JCO.2005.06.178

    Article  PubMed  Google Scholar 

  3. Wishart GC, Bajdik CD, Dicks E et al (2012) PREDICT plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br J Cancer 107:800–807. https://doi.org/10.1038/bjc.2012.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800. https://doi.org/10.1056/NEJMra0801289

    Article  CAS  PubMed  Google Scholar 

  5. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536. https://doi.org/10.1038/415530a

    Article  Google Scholar 

  6. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A Gene-Expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009. https://doi.org/10.1056/NEJMoa021967

    Article  PubMed  Google Scholar 

  7. Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192. https://doi.org/10.1093/jnci/djj329

    Article  CAS  PubMed  Google Scholar 

  8. Cardoso F, van’t Veer LJ, Bogaerts J et al (2016) 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375:717–729. https://doi.org/10.1056/NEJMoa1602253

    Article  CAS  PubMed  Google Scholar 

  9. Schlimok G, Funke I, Holzmann B et al (1987) Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies. Proc Natl Acad Sci 84:8672–8676. https://doi.org/10.1073/pnas.84.23.8672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Müller P, Weckermann D, Riethmüller G, Schlimok G (1996) Detection of genetic alterations in micrometastatic cells in bone marrow of cancer patients by fluorescence in situ hybridization. Cancer Genet Cytogenet 88:8–16. https://doi.org/10.1016/0165-4608(95)00189-1

    Article  PubMed  Google Scholar 

  11. Husemann Y, Geigl JB, Schubert F et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68. https://doi.org/10.1016/j.ccr.2007.12.003

    Article  PubMed  Google Scholar 

  12. Schmidt-Kittler O, Ragg T, Daskalakis A et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci 100:7737–7742. https://doi.org/10.1073/pnas.1331931100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hartkopf AD, Taran FA, Wallwiener M et al (2014) Prognostic relevance of disseminated tumour cells from the bone marrow of early stage breast cancer patients—results from a large single-centre analysis. Eur J Cancer 50:2550–2559. https://doi.org/10.1016/j.ejca.2014.06.025

    Article  PubMed  Google Scholar 

  14. Domschke C, Diel IJ, Englert S et al (2013) Prognostic value of disseminated tumor cells in the bone marrow of patients with operable primary breast cancer: a long-term follow-up study. Ann Surg Oncol 20:1865–1871. https://doi.org/10.1245/s10434-012-2814-4

    Article  PubMed  Google Scholar 

  15. Braun S, Vogl FD, Naume B et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802. https://doi.org/10.1056/NEJMoa050434

    Article  CAS  PubMed  Google Scholar 

  16. Fehm T, Braun S, Muller V et al (2006) A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107:885–892. https://doi.org/10.1002/cncr.22076

    Article  PubMed  Google Scholar 

  17. Lips EH, Mukhtar RA, Yau C et al (2012) Lobular histology and response to neoadjuvant chemotherapy in invasive breast cancer. Breast Cancer Res Treat 136:35–43. https://doi.org/10.1007/s10549-012-2233-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Straver ME, Glas AM, Hannemann J et al (2010) The 70-gene signature as a response predictor for neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 119:551–558. https://doi.org/10.1007/s10549-009-0333-1

    Article  PubMed  Google Scholar 

  19. Hartkopf AD, Wallwiener M, Kommoss S et al (2016) Detection of disseminated tumor cells from the bone marrow of patients with early breast cancer is associated with high 21-gene recurrence score. Breast Cancer Res Treat 156:91–95. https://doi.org/10.1007/s10549-016-3728-9

    Article  CAS  PubMed  Google Scholar 

  20. Bartlett JMS, Bayani J, Marshall A et al (2016) Comparing breast cancer multiparameter tests in the optima prelim trial: no test is more equal than the others. J Natl Cancer Inst 108:1–9. https://doi.org/10.1093/jnci/djw050

    Article  Google Scholar 

  21. Kim C, Baker J, Ph D et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826. https://doi.org/10.1056/NEJMoa041588

    Article  PubMed  Google Scholar 

  22. Meng S, Tripathy D, Frenkel EP et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162. https://doi.org/10.1158/1078-0432.CCR-04-1110

    Article  PubMed  Google Scholar 

  23. Janni WJ, Rack B, Terstappen LWMM et al (2016) Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 22:2583–2593. https://doi.org/10.1158/1078-0432.CCR-15-1603

    Article  CAS  PubMed  Google Scholar 

  24. Lucci A, Hall CS, Lodhi AK et al (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13:688–695. https://doi.org/10.1016/S1470-2045(12)70209-7

    Article  PubMed  Google Scholar 

  25. Bidard F-C, Proudhon C, Pierga J-Y (2016) Circulating tumor cells in breast cancer. Mol Oncol 10:418–430. https://doi.org/10.1016/j.molonc.2016.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  26. Buus R, Sestak I, Kronenwett R et al (2016) Comparison of endopredict and epclin with oncotype dx recurrence score for prediction of risk of distant recurrence after endocrine therapy. J Natl Cancer Inst 108:1–7. https://doi.org/10.1093/jnci/djw149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas D. Hartkopf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments conducted comply with current German laws.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, V.P., Taran, FA., Wallwiener, M. et al. A high-risk 70-gene signature is not associated with the detection of tumor cell dissemination to the bone marrow. Breast Cancer Res Treat 169, 305–309 (2018). https://doi.org/10.1007/s10549-018-4679-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4679-0

Keywords

Navigation