Skip to main content

Advertisement

Log in

Unenhanced magnetic resonance screening using fused diffusion-weighted imaging and maximum-intensity projection in patients with a personal history of breast cancer: role of fused DWI for postoperative screening

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

To assess the diagnostic performance of unenhanced abbreviated protocol (AP) comprising fused diffusion-weighted imaging (DWI) using T1-weighted imaging (T1WI) with DWI maximum-intensity projections (DWI MIPs) for screening patients with a personal history of breast cancer (PHBC).

Methods

This institutional review board-approved retrospective observational study included 343 patients with PHBC who underwent 3T breast magnetic resonance imaging (MRI) between November 2013 and September 2015. Three breast radiologists reviewed the DWI MIPs of the AP to identify lesions, and the remaining axial AP images to characterize the detected lesions and establish the breast imaging reporting and data system final assessment. The conventional protocol (CP) images were also evaluated in the same way. The decision-making times were recorded.

Results

MRI acquisition time was approximately 5 min for AP. The mean times to read MIPs and remaining images were shorter in AP than in CP (5.5 and 22.1 s vs. 7.8 and 29.6 s). On DWI MIPs, the readers detected 9, 8, and 9 of 9 pathologically proven cancers, with negative predictive values (NPVs) of 100.0, 99.6, and 100.0%. Complete AP showed sensitivities of 88.9, 100.0, and 88.9% and specificities of 94.8, 93.4, and 95.1%. Complete CP showed sensitivities of 100.0, 100.0, and 88.9% and specificities of 93.4, 94.0, and 96.3%.

Conclusions

An unenhanced AP had a short acquisition time of 5 min, and DWI MIPs showed NPVs greater than 99% across readers. The diagnostic performance of complete AP was equivalent to that of CP for screening patients with PHBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Darby S, McGale P, Correa C, Taylor C, Arriagada R, Clarke M, Cutter D, Davies C, Ewertz M, Godwin J, Gray R, Pierce L, Whelan T, Wang Y, Peto R (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–1716. doi:10.1016/S0140-6736(11)61629-2

    Article  CAS  PubMed  Google Scholar 

  2. Houssami N, Ciatto S, Martinelli F, Bonardi R, Duffy SW (2009) Early detection of second breast cancers improves prognosis in breast cancer survivors. Ann Oncol 20:1505–1510. doi:10.1093/annonc/mdp037

    Article  CAS  PubMed  Google Scholar 

  3. Belli P, Costantini M, Romani M, Marano P, Pastore G (2002) Magnetic resonance imaging in breast cancer recurrence. Breast Cancer Res Treat 73:223–235

    Article  CAS  PubMed  Google Scholar 

  4. Davis PL, McCarty KS Jr (1997) Sensitivity of enhanced MRI for the detection of breast cancer: new, multicentric, residual, and recurrent. Eur Radiol 7(Suppl 5):289–298

    Article  PubMed  Google Scholar 

  5. Soderstrom CE, Harms SE, Farrell RS Jr, Pruneda JM, Flamig DP (1997) Detection with MR imaging of residual tumor in the breast soon after surgery. AJR Am J Roentgenol 168:485–488. doi:10.2214/ajr.168.2.9016232

    Article  CAS  PubMed  Google Scholar 

  6. Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, Morris E, Pisano E, Schnall M, Sener S, Smith RA, Warner E, Yaffe M, Andrews KS, Russell CA (2007) American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57:75–89

    Article  PubMed  Google Scholar 

  7. Lehman CD, Lee JM, DeMartini WB, Hippe DS, Rendi MH, Kalish G, Porter P, Gralow J, Partridge SC (2016) Screening MRI in women with a personal history of breast cancer. J Natl Cancer Inst. doi:10.1093/jnci/djv349

    PubMed  Google Scholar 

  8. Destounis S, Arieno A, Morgan R (2016) Personal history of premenopausal breast cancer as a risk factor for referral to screening breast MRI. Acad Radiol 23:353–357. doi:10.1016/j.acra.2015.11.012

    Article  PubMed  Google Scholar 

  9. Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers RD, Bieling HB (2014) Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J Clin Oncol 32:2304–2310. doi:10.1200/JCO.2013.52.5386

    Article  PubMed  Google Scholar 

  10. Grimm LJ, Soo MS, Yoon S, Kim C, Ghate SV, Johnson KS (2015) Abbreviated screening protocol for breast MRI: a feasibility study. Acad Radiol 22:1157–1162. doi:10.1016/j.acra.2015.06.004

    Article  PubMed  Google Scholar 

  11. Mango VL, Morris EA, David Dershaw D, Abramson A, Fry C, Moskowitz CS, Hughes M, Kaplan J, Jochelson MS (2015) Abbreviated protocol for breast MRI: are multiple sequences needed for cancer detection? Eur J Radiol 84:65–70. doi:10.1016/j.ejrad.2014.10.004

    Article  PubMed  Google Scholar 

  12. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782. doi:10.1148/radiol.15150025

    Article  PubMed  Google Scholar 

  13. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  14. Hagen AI, Kvistad KA, Maehle L, Holmen MM, Aase H, Styr B, Vabo A, Apold J, Skaane P, Moller P (2007) Sensitivity of MRI versus conventional screening in the diagnosis of BRCA-associated breast cancer in a national prospective series. Breast 16:367–374. doi:10.1016/j.breast.2007.01.006

    Article  PubMed  Google Scholar 

  15. Sardanelli F, Podo F, D’Agnolo G, Verdecchia A, Santaquilani M, Musumeci R, Trecate G, Manoukian S, Morassut S, de Giacomi C, Federico M, Cortesi L, Corcione S, Cirillo S, Marra V, Cilotti A, Di Maggio C, Fausto A, Preda L, Zuiani C, Contegiacomo A, Orlacchio A, Calabrese M, Bonomo L, Di Cesare E, Tonutti M, Panizza P, Del Maschio A (2007) Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): interim results. Radiology 242:698–715. doi:10.1148/radiol.2423051965

    Article  PubMed  Google Scholar 

  16. Leach MO, Boggis CR, Dixon AK, Easton DF, Eeles RA, Evans DG, Gilbert FJ, Griebsch I, Hoff RJ, Kessar P, Lakhani SR, Moss SM, Nerurkar A, Padhani AR, Pointon LJ, Thompson D, Warren RM (2005) Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365:1769–1778. doi:10.1016/S0140-6736(05)66481-1

    Article  CAS  PubMed  Google Scholar 

  17. Warner E, Plewes DB, Hill KA, Causer PA, Zubovits JT, Jong RA, Cutrara MR, DeBoer G, Yaffe MJ, Messner SJ, Meschino WS, Piron CA, Narod SA (2004) Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292:1317–1325. doi:10.1001/jama.292.11.1317

    Article  CAS  PubMed  Google Scholar 

  18. Kuhl CK, Schrading S, Leutner CC, Morakkabati-Spitz N, Wardelmann E, Fimmers R, Kuhn W, Schild HH (2005) Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 23:8469–8476. doi:10.1200/JCO.2004.00.4960

    Article  PubMed  Google Scholar 

  19. Evans DG, Kesavan N, Lim Y, Gadde S, Hurley E, Massat NJ, Maxwell AJ, Ingham S, Eeles R, Leach MO, Group M, Howell A, Duffy SW (2014) MRI breast screening in high-risk women: cancer detection and survival analysis. Breast Cancer Res Treat 145:663–672. doi:10.1007/s10549-014-2931-9

    Article  PubMed  Google Scholar 

  20. Moller P, Stormorken A, Jonsrud C, Holmen MM, Hagen AI, Clark N, Vabo A, Sun P, Narod SA, Maehle L (2013) Survival of patients with BRCA1-associated breast cancer diagnosed in an MRI-based surveillance program. Breast Cancer Res Treat 139:155–161. doi:10.1007/s10549-013-2540-z

    Article  CAS  PubMed  Google Scholar 

  21. Brennan S, Liberman L, Dershaw DD, Morris E (2010) Breast MRI screening of women with a personal history of breast cancer. AJR Am J Roentgenol 195:510–516. doi:10.2214/AJR.09.3573

    Article  PubMed  Google Scholar 

  22. Dershaw DD, McCormick B, Osborne MP (1992) Detection of local recurrence after conservative therapy for breast carcinoma. Cancer 70:493–496

    Article  CAS  PubMed  Google Scholar 

  23. Gweon HM, Cho N, Han W, Yi A, Moon HG, Noh DY, Moon WK (2014) Breast MR imaging screening in women with a history of breast conservation therapy. Radiology 272:366–373. doi:10.1148/radiol.14131893

    Article  PubMed  Google Scholar 

  24. Schacht DV, Yamaguchi K, Lai J, Kulkarni K, Sennett CA, Abe H (2014) Importance of a personal history of breast cancer as a risk factor for the development of subsequent breast cancer: results from screening breast MRI. AJR Am J Roentgenol 202:289–292. doi:10.2214/AJR.13.11553

    Article  PubMed  Google Scholar 

  25. Arazi-Kleinman T, Skair-Levy M, Slonimsky E, Maly B, Uziely B, Libson E, Sella T (2013) Journal club: is screening MRI indicated for women with a personal history of breast cancer? Analysis based on biopsy results. AJR Am J Roentgenol 201:919–927. doi:10.2214/AJR.11.8450

    Article  PubMed  Google Scholar 

  26. Giess CS, Poole PS, Chikarmane SA, Sippo DA, Birdwell RL (2015) Screening breast MRI in patients previously treated for breast cancer: diagnostic yield for cancer and abnormal interpretation rate. Acad Radiol 22:1331–1337. doi:10.1016/j.acra.2015.05.009

    Article  PubMed  Google Scholar 

  27. Lehman CD (2006) Screening MRI for women at high risk for breast cancer. Semin Ultrasound CT MR 27:333–338

    Article  PubMed  Google Scholar 

  28. Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619–2621. doi:10.1007/s00330-006-0495-8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hunt CH, Hartman RP, Hesley GK (2009) Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR Am J Roentgenol 193:1124–1127. doi:10.2214/AJR.09.2520

    Article  PubMed  Google Scholar 

  30. Kul S, Cansu A, Alhan E, Dinc H, Gunes G, Reis A (2011) Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of breast tumors. AJR Am J Roentgenol 196:210–217. doi:10.2214/AJR.10.4258

    Article  PubMed  Google Scholar 

  31. Nechifor-Boila IA, Bancu S, Buruian M, Charlot M, Decaussin-Petrucci M, Krauth JS, Nechifor-Boila AC, Borda A (2013) Diffusion weighted imaging with background body signal suppression/T2 image fusion in magnetic resonance mammography for breast cancer diagnosis. Chirurgia 108:199–205 (Bucur)

    CAS  PubMed  Google Scholar 

  32. Bickelhaupt S, Tesdorff J, Laun FB, Kuder TA, Lederer W, Teiner S, Maier-Hein K, Daniel H, Stieber A, Delorme S, Schlemmer HP (2017) Independent value of image fusion in unenhanced breast MRI using diffusion-weighted and morphological T2-weighted images for lesion characterization in patients with recently detected BI-RADS 4/5 x-ray mammography findings. Eur Radiol 27:562–569. doi:10.1007/s00330-016-4400-9

    Article  PubMed  Google Scholar 

  33. Shin HJ, Chae EY, Choi WJ, Ha SM, Park JY, Shin KC, Cha JH, Kim HH (2016) Diagnostic performance of fused diffusion-weighted imaging using unenhanced or postcontrast T1-weighted MR imaging in patients with breast cancer. Medicine 95:e3502. doi:10.1097/MD.0000000000003502 (Baltimore)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trimboli RM, Verardi N, Cartia F, Carbonaro LA, Sardanelli F (2014) Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR, and diffusion-weighted imaging: a proof of concept study. AJR Am J Roentgenol 203:674–681. doi:10.2214/AJR.13.11816

    Article  PubMed  Google Scholar 

  35. Ogura A, Hayakawa K, Miyati T, Maeda F (2008) The effect of susceptibility of gadolinium contrast media on diffusion-weighted imaging and the apparent diffusion coefficient. Acad Radiol 15:867–872. doi:10.1016/j.acra.2007.12.020

    Article  PubMed  Google Scholar 

  36. Partridge SC, McDonald ES (2013) Diffusion weighted magnetic resonance imaging of the breast: protocol optimization, interpretation, and clinical applications. Magn Reson Imaging Clin N Am 21:601–624. doi:10.1016/j.mric.2013.04.007

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jung Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.W., Shin, H.J., Shin, K.C. et al. Unenhanced magnetic resonance screening using fused diffusion-weighted imaging and maximum-intensity projection in patients with a personal history of breast cancer: role of fused DWI for postoperative screening. Breast Cancer Res Treat 165, 119–128 (2017). https://doi.org/10.1007/s10549-017-4322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4322-5

Keywords

Navigation