Skip to main content

Advertisement

Log in

Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The extracellular region (EC) of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) contains seven immunoglobulin-like (Ig-like) domains that are required for specific ligand binding and receptor dimerization. Studies of domain 4–7 deletions and substitutions provided insights into the interaction between receptors in the absence of VEGF. In this study, we investigated the effect of domain 4 in ligand-independent VEGFR-2 dimerization and activation in human vascular endothelial cells and human breast cancer cells.

Methods

To confirm the role of domain 4 in ligand-independent receptor dimerization and activation, two VEGFR-2 fragments with and without domain 4, KFP1 and KFP2, were generated by recombinant DNA technology. We measured the affinity of KFP1 and KFP2 with VEGFR-2, and the roles of KFP1 and FKP2 in dimerization and phosphorylation of VEGFR-2. We also evaluated the effect of KFP1 and FKP2 on cell proliferation and migration in HUVECs and in human breast cancer cells.

Results

We showed that KFP1 did not affect the interaction of VEGFR-2 and VEGF but bound VEGFR-2 in the absence of VEGF. Furthermore, cross-linking and cross-linking immunoblotting demonstrated that KFP1 could form a complex with VEGFR-2, which resulted in VEGFR-2 dimerization in the absence of VEGF. Importantly, we found that the KDR fragment with domain 4 induced phosphorylation of VEGFR-2, as well as phosphorylation of downstream receptor kinases in HUVECs and VEGFR-2-positive breast cancer cells. Consistent with these results, this ligand-independent activation of VEGFR-2 also promoted downstream signaling and cell proliferation and migration.

Conclusions

The domain 4 of VEGFR-2 plays an important role in the interaction between VEGFR receptors in the absence of VEGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VEGF:

Vascular endothelial growth factor

VEGFR-2:

Vascular endothelial growth factor receptor-2

KDR:

Kinase insert domain receptor

RTK:

Receptor tyrosine kinase

ERK:

Extracellular signal-regulated kinase

PLCγ:

Phospholipase Cγ

PDGFR:

Platelet-derived growth factor receptor

EGFR:

Epidermal growth factor receptor

FGFR:

Fibroblast growth factor receptor

SCFR:

Stem cell factor receptor

ECM:

Endothelial cell medium

ELISA:

Enzyme-linked immunosorbent assay

References

  1. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  CAS  PubMed  Google Scholar 

  2. Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR (2010) Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophy Acta 1806(1):108–121

    CAS  Google Scholar 

  3. Bachelder RE, Wendt MA, Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62(24):7203–7206

    CAS  PubMed  Google Scholar 

  4. Nakopoulou L, Stefanaki K, Panayotopoulou E, Giannopoulou I, Athanassiadou P, Gakiopoulou-Givalou H, Louvrou A (2002) Expression of the vascular endothelial growth factor receptor-2/Flk-1 in breast carcinomas: correlation with proliferation. Hum Pathol 33:863–870

    Article  CAS  PubMed  Google Scholar 

  5. Bachelder RE, Crago A, Chung J, Wendt MA, Shaw LM, Robinson G, Mercurio AM (2001) Vascular endothelial growth factor is an autocrine survival factor for Neuropilin-expressing breast carcinoma cells. Cancer Res 61(15):5736–5740

    CAS  PubMed  Google Scholar 

  6. Ryden L, Linderholm B, Nielsen NH, Emdin S, Jonsson PE, Landberg G (2003) Tumor specific VEGF-A and VEGFR2/KDR protein are co-expressed in breast cancer. Breast Cancer Res Treat 82(3):147–154

    Article  CAS  PubMed  Google Scholar 

  7. Koukourakis MI, Limberis V, Tentes I, Kontomanolis E, Kortsaris A, Sivridis E, Giatromanolaki A (2011) Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine 53(3):370–375

    Article  CAS  PubMed  Google Scholar 

  8. Ryden L, Jirstrom K, Halund M, Stal O, Ferno M (2010) Epidermal growth factor receptor and vascular endothelial growth factor receptor 2 are specific biomarkers in triple-negative breast cancer. Results from a controlled randomized trial with long-term follow-up. Breast Cancer Res Treat 120(2):491–498

    Article  CAS  PubMed  Google Scholar 

  9. Yarden Y, Escobedo JA, Kuang WJ, Yang-Feng TL, Daniel TO, Tremble PM, Chen EY, Ando ME, Harkins RN, Francke U (1986) Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323(6085):226–232

    Article  CAS  PubMed  Google Scholar 

  10. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502

    Article  PubMed  PubMed Central  Google Scholar 

  11. Claesson-Welsh L, Heldin CH (1989) Platelet-derived growth factor. Three isodorms that bind to two distinct cell surface receptors. Acta Oncol 28(3):331–334

    Article  CAS  PubMed  Google Scholar 

  12. Shinkai A, Ito M, Anazawa H, Yamaguchi S, Shitara K, Shibuya M (1998) Mapping of the site involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J Biol Chem 273(47):31283–31288

    Article  CAS  PubMed  Google Scholar 

  13. Fuh G, Li B, Crowley C, Cunningham B, Wells JA (1998) Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor. J Biol Chem 273(18):11197–11204

    Article  CAS  PubMed  Google Scholar 

  14. Leppanen VM, Prota AE, Jeltsch M, Anisimov A, Kalkkinen N, Strandin T, Lankinen H, Goldman A, Ballmer-Hofer K, Alitalo K (2010) Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci USA 107(6):2425–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dosch DD, Ballmer-Hofer K (2010) Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. FASEB J 24(1):32–38

    Article  PubMed  Google Scholar 

  16. Yang Y, Xie P, Opatowsky Y, Schlessinger J (2010) Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proc Natl Acad Sci USA 107(5):1906–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kisko K, Brozzo MS, Missimer J, Schleier T, Menzel A, Leppanen VM, Alitalo K, Walzthoeni T, Aebersold R, Ballmer-Hofer K (2011) Structural analysis of vascular endothelial growth factor receptor-2/ligand complexes by small-angle X-ray solution scattering. FASEB J 25(9):2980–2986

    Article  CAS  PubMed  Google Scholar 

  18. Yuzawa S, Opatowsky Y, Zhang Z, Mandiyan V, Lax I, Schlessinger J (2007) Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 130(2):323–334

    Article  CAS  PubMed  Google Scholar 

  19. Sarabipour S, Ballmer-Hofer K, Hristova K (2016) VEGFR-2 conformational switch in response to ligand binding. Elife 5:e13876

    Article  PubMed  PubMed Central  Google Scholar 

  20. Herren B, Rooney B, Weyer KA, Iberg N, Schmid G, Pech M (1993) Dimerization of extracellular domains of platelet-derived growth factor receptors. A revised model of receptor-ligand interaction. J Biol Chem 268(20):15088–15095

    CAS  PubMed  Google Scholar 

  21. Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007) Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA 104(29):12211–12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110(6):669–672

    Article  CAS  PubMed  Google Scholar 

  23. Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80(2):213–223

    Article  CAS  PubMed  Google Scholar 

  24. Omura T, Miyazawa K, Ostman A, Heidin CH (1997) Identification of a 190-kDa vascular endothelial growth factor 165 cell surface binding protein on a human glioma cell line. J Biol Chem 272(37):23317–23322

    Article  CAS  PubMed  Google Scholar 

  25. Omura T, Heldin CH, Ostman A (1997) Immunoglobulin-like domain 4 receptor-receptor interactions contribute to platelet-derived growth factor-induced receptor dimerization. J Biol Chem 272(9):12676–12682

    Article  CAS  PubMed  Google Scholar 

  26. Blechman JM, Lev S, Barg J, Eisenstein M, Vaks B, Vogel Z, Givol D, Yarden Y (1995) The fourth immunoglobulin domain of the stem cell factor receptor couples ligand binding to signal transduction. Cell 80(1):103–113

    Article  CAS  PubMed  Google Scholar 

  27. Tao Q, Backer MV, Backer JM, Terman BI (2001) Kinase insert domain receptor (KDR) extracellular immunoglobulin-like domains 4–7 contain structural features that block receptor dimerization and vascular endothelial growth factor-induced signaling. J Biol Chem 276(24):21916–21923

    Article  CAS  PubMed  Google Scholar 

  28. King C, Stoneman M, Raicu V, Hristova K (2016) Fully quantified spectral imaging reveals in vivo membrane protein interactions. Integr Biol (Camb) 8(2):216–229

    Article  CAS  Google Scholar 

  29. Hyde CA, Giese A, Stuttfeld E, Abram Saliba J, Villemagne D, Schleier T, Bina HK, Ballmer-Hofer K (2012) Targeting extracellular domain D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor sites. Mol Cell Biol 32(19):3802–3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruch C, Skiniotis G, Steinmetz MO, Walz T, Ballmer-Hofer K (2007) Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nat Struct Mol Biol 14(3):249–250

    Article  CAS  PubMed  Google Scholar 

  31. Giatromanolaki A, Koukourakis MI, Sivridis E, Chlouverakis G, Vourvouhaki E, Turley H, Harris AL, Gatter KC (2007) Activated VEGFR2/KDR pathway in tumour cells and tumour associated vessels of colorectal cancer. Eur J Clin Invest 37(11):878–886

    Article  CAS  PubMed  Google Scholar 

  32. Straume O, Akslen LA (2003) Increased expression of VEGF-receptors (FLT-1, KDR, NRP-1) and thrombospondin-1 is associated with glomeruloid microvascular proliferation, an aggressive angiogenic phenotype, in malignant melanoma. Angiogenesis 6(4):295–301

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55(18):3964–3968

    CAS  PubMed  Google Scholar 

  34. Cooper ME, Vranes D, Youssef S, Stacker SA, Cox AJ, Rizkalla B, Casley DJ, Bach LA, Kelly DJ, Gilbert RE (1999) Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 48(11):2229–2239

    Article  CAS  PubMed  Google Scholar 

  35. Urschel K, Garlichs CD, Daniel WG, Cicha I (2011) VEGFR2 signalling contributes to increased endothelial susceptibility to TNF-α under chronic non-uniform shear stress. Atherosclerosis 219(2):499–509

    Article  CAS  PubMed  Google Scholar 

  36. Svensson S, Jirstrom K, Ryden L, Roos G, Emdin S, Ostrowski MC, Landberg G (2005) ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene 24(27):4370–4379

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Gluck S, Zhang L, Moran MF (1998) Requirement for phospholipase C-gamma1 enzymatic activity in growth factor-induced mitogenesis. Mol Cell Biol 18(1):590–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Higgins KJ, Abdelrahim M, Liu S, Yoon K, Safe S (2006) Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun 345(1):292–301

    Article  CAS  PubMed  Google Scholar 

  39. Guo S, Colbert LS, Fuller M, Zhang Y, Gonzalez-Perez RR (2010) Vascular endothelial growth factor receptor-2 in breast cancer. Biochim Biophys Acta 1806(1):108–121

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weigand M, Hantel P, Kreienberg R, Waltenberger J (2005) Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8(3):197–204

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez RR, Cherfils S, Escobar M, Yoo JH, Carino C, Styer AK, Sullivan BT, Sakamoto H, Olawaiye A, Serikawa T, Lynch MP, Rueda BR (2006) Leptin signaling promotes the growth of mammary tumors and increases the expression of vascular endothelial growth factor (VEGF) and its receptor type two (VEGF-R2). J Biol Chem 281(36):26320–26328

    Article  CAS  PubMed  Google Scholar 

  42. Spannuth WA, Nick AM, Jennings NB, Armaiz-Pena GN, Mangala LS, Danes CG, Lin YG, Merritt WM, Thaker PH, Kamat AA, Han LY, Tonra JR, Coleman RL, Ellis LM, Stood AK (2009) Functional significance of VEGR-2 on ovarian cancer cells. Int J Cancer 124(5):1045–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sato H, Takeda Y (2009) VEGFR2 expression and relationship between tumor neovascularization and histologic characteristics in oral squamous cell carcinoma. J Oral Sci 51(4):551–557

    Article  PubMed  Google Scholar 

  44. Gockel I, Moehler M, Frerichs K, Drescher D, Trinh TT, Duenschede F, Borschitz T, Schimanski K, Biesterfeld S, Herzer K, Galle PR, Lang H, Junginger T, Schimanski CC (2008) Co-expression of receptor tyrosine kinases in esophageal adenocarcinoma and squamous cell cancer. Oncol Rep 20(4):845–850

    CAS  PubMed  Google Scholar 

  45. Badalian G, Derecskei K, Szendroi A, Szendroi M, Timar J (2007) EGFR and VEGFR2 protein expressions in bone metastases of clear cell renal cancer. Anticancer Res 27(2):889–894

    CAS  PubMed  Google Scholar 

  46. Ryden L, Linderholm B, Nielsen NH, Emdin S, Jonsson PE, Landberg G (2003) Tumor specific VEGF-A and VEGFR2/KDR protein are co-expression in breast cancer. Breast Cancer Res Treat 82(3):147–154

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh S, Sullivan CA, Zerkowski MP, Molinaro AM, Rimm DL, Camp RL, Chung GG (2008) High levels of vascular endothelial growth factor and its receptors (VEGFR-1, VEGFR-2, neuropilin-1) are associated with worse outcome in breast cancer. Hum Pathol 39(12):1835–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fertig EJ, Lee E, Pandey NB, Popel AS (2015) Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes. Sci Rep 15(5):12133. doi:10.1038/srep12133

    Article  Google Scholar 

  49. Zhang M, Zhang J, Yan M, Li H, Yang C, Yu D (2008) Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choroidal neovascularization in monkeys. Mol Vis 14:37–49

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang M, Yu D, Yang C, Xia Q, Li W, Liu B, Li H (2009) The pharmacology study of a new recombinant human VEGF receptor-fc fusion protein on experimental choroidal neovascularization. Pharm Res 26(1):204–210

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen TT, Guymer R (2015) Conbercept (KH-902) for the treatment of neovascular age-related macular degeneration. Expert Rev Clin Pharmacol 8(5):541–548

    Article  CAS  PubMed  Google Scholar 

  52. Huang J, Li X, Li M, Li S, Xiao W, Chen X, Cai M, Wu Q, Luo D, Tang S, Luo Y (2012) Effects of intravitreal injection of KH902, a vascular endothelial growth factor receptor decoy, on the retinas of streptozotocin-induced diabetic rats. Diabetes Obes Metab 14(7):644–653

    Article  CAS  PubMed  Google Scholar 

  53. Su L, Ren X, Wei H, Zhao L, Zhang X, Liu J, Su C, Tan L, Li X (2016) Intravitreal Conbercept (KH902) for surgical treatment of severe proliferative diabetic retinopathy. Rentina 36(5):938–943

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Yue.

Ethics declarations

Conflict of Interest

All authors declare no actual, potential, or perceived conflict of interest that would prejudice the impartiality of the article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (DOCX 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Gao, X., Fu, W. et al. Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells. Breast Cancer Res Treat 163, 423–434 (2017). https://doi.org/10.1007/s10549-017-4189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4189-5

Keywords

Navigation