Skip to main content

Advertisement

Log in

Combined inhibition of glycolysis and AMPK induces synergistic breast cancer cell killing

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Targeting glycolysis for cancer treatment has been investigated as a therapeutic method but has not offered a feasible chemotherapeutic strategy. Our aim was to examine whether AMP-activated protein kinase (AMPK), a conditional oncogene, rescues the energetic stress and cytotoxicity induced by 2-deoxyglucose (2-DG), a glycolytic inhibitor, and the related mechanisms. Luciferin/luciferase adenosine triphosphate (ATP) determination, Western analysis, qRT-PCR analyses, MTT growth assay, clonogenic assay, and statistical analysis were performed in this study. 2-DG decreased ATP levels and subsequently activated AMPK, which contribute to intracellular ATP recovery in MCF-7 cells thus exhibiting no apparent cytotoxicity. Compound C, an AMPK inhibitor, further potentiates 2-DG-induced decrease in ATP levels and inhibits their recovery. 2-DG, via AMPK activation, stimulated cAMP response element-binding protein (CREB) phosphorylation and activity and promoted nuclear peroxisome proliferator-activated receptor gamma coactivator-1-beta (PGC-1β) and estrogen-related receptor α (ERRα) protein expression, leading to augmented mitochondrial biogenesis and expression of fatty acid oxidation (FAO) genes including PPARα, MCAD, CPT1C, and ACO. This metabolic adaptation elicited by AMPK counteracts the ATP-depleting and cancer cell-killing effect of 2-DG. However, 2-DG in combination with AMPK antagonists or small interfering RNA caused a dramatic increase in cytotoxicity in MCF-7 but not in MCF-10A cells. Similarly, when combined with inhibition of CREB/PGC-1β/ERRα pathway, 2-DG saliently suppressed mitochondrial biogenesis and the expression of FAO genes, depleted ATP production, and enhanced cytotoxicity in cancer cells. Collectively, the combination of 2-DG and AMPK inhibition synergistically enhanced the cytotoxic potential in breast cancer cells with a relative nontoxicity to normal cells and may offer a promising, safe, and effective breast cancer therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ershler WB (2006) Capecitabine monotherapy: safe and effective treatment for metastatic breast cancer. Oncologist 11:325–335

    Article  CAS  PubMed  Google Scholar 

  2. National Comprehensive Cancer Network. Clinical practice guidelines in oncology: breast cancer, version 1. http://www.nccn.org/professionals/physician_gls/PDF/breast.pdf. Accessed 23 March 2006

  3. Geschwind JF, Georgiades CS, Ko YH, Pedersen PL (2004) Recently elucidated energy catabolism pathways provide opportunities for novel treatments in hepatocellular carcinoma. Expert Rev Anticancer Ther 4:449–457

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  5. Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  6. Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ (2004) 2-Deoxy-d-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64:31–34

    Article  CAS  PubMed  Google Scholar 

  7. Zhong D, Xiong L, Liu T, Liu X, Liu X, Chen J, Sun SY, Khuri FR, Zong Y, Zhou Q, Zhou W (2009) The glycolytic inhibitor 2-deoxyglucose activates multiple prosurvival pathways through IGF1R. J Biol Chem 284:23225–23233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Maher JC, Wangpaichitr M, Savaraj N, Kurtoglu M, Lampidis TJ (2007) Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2-deoxy-d-glucose. Mol Cancer Ther 6:732–741

    Article  CAS  PubMed  Google Scholar 

  9. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wu Y, Zhou H, Wu K, Lee S, Li R, Liu X (2014) PTEN phosphorylation and nuclear export mediate free fatty acid-induced oxidative stress. Antioxid Redox Signal 20:1382–1395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Weber G (1977) Enzymology of cancer cells (first of two parts). N Engl J Med 296:486–492

    Article  CAS  PubMed  Google Scholar 

  14. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  CAS  PubMed  Google Scholar 

  15. Landor SK, Mutvei AP, Mamaeva V, Jin S, Busk M, Borra R, Gronroos TJ, Kronqvist P, Lendahl U, Sahlgren CM (2011) Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci USA 108:18814–18819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ (2005) Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 7:324–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD (2007) MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13–19

    Article  PubMed  Google Scholar 

  18. Herzig S, Hedrick S, Morantte I, Koo SH, Galimi F, Montminy M (2003) CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-gamma. Nature 426:190–193

    Article  CAS  PubMed  Google Scholar 

  19. Bernatchez G, Giroux V, Lassalle T, Carpentier AC, Rivard N, Carrier JC (2013) ERRalpha metabolic nuclear receptor controls growth of colon cancer cells. Carcinogenesis 34:2253–2261

    Article  CAS  PubMed  Google Scholar 

  20. Schreiber SN, Emter R, Hock MB, Knutti D, Cardenas J, Podvinec M, Oakeley EJ, Kralli A (2004) The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA 101:6472–6477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB, Spiegelman BM (2003) PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278:30843–30848

    Article  CAS  PubMed  Google Scholar 

  22. Huss JM, Torra IP, Staels B, Giguere V, Kelly DP (2004) Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol 24:9079–9091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20:1868–1876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  25. Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    Article  CAS  PubMed  Google Scholar 

  26. Jeon SM, Hay N (2012) The dark face of AMPK as an essential tumor promoter. Cell Logist 2:197–202

    Article  PubMed Central  PubMed  Google Scholar 

  27. Dowling RJ, Goodwin PJ, Stambolic V (2011) Understanding the benefit of metformin use in cancer treatment. BMC Med 9:33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Shackelford DB, Abt E, Gerken L, Vasquez DS, Seki A, Leblanc M, Wei L, Fishbein MC, Czernin J, Mischel PS, Shaw RJ (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23:143–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Liang J, Mills GB (2013) AMPK: a contextual oncogene or tumor suppressor? Cancer Res 73:2929–2935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M, Esumi H (2002) Critical roles of AMP-activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 21:6082–6090

    Article  CAS  PubMed  Google Scholar 

  31. Philp A, Belew MY, Evans A, Pham D, Sivia I, Chen A, Schenk S, Baar K (2011) The PGC-1alpha-related coactivator promotes mitochondrial and myogenic adaptations in C2C12 myotubes. Am J Physiol Regul Integr Comp Physiol 301:R864–R872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277:1645–1648

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki T, Miki Y, Moriya T, Shimada N, Ishida T, Hirakawa H, Ohuchi N, Sasano H (2004) Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer Res 64:4670–4676

    Article  CAS  PubMed  Google Scholar 

  35. Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH, Pusztai L, Huang P (2014) Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res 16:434

    Article  PubMed Central  PubMed  Google Scholar 

  36. Cheng G, Zielonka J, Dranka BP, McAllister D, Mackinnon AC Jr, Joseph J, Kalyanaraman B (2012) Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res 72:2634–2644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Maher JC, Savaraj N, Priebe W, Liu H, Lampidis TJ (2005) Differential sensitivity to 2-deoxy-d-glucose between two pancreatic cell lines correlates with GLUT-1 expression. Pancreas 30:e34–e39

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH, NCI, NIMHD, NCATS) Grants: U54 CA143931-01, U54MD007598, UL1TR000124 (J. V. Vadgama).

Conflict of interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydutt V. Vadgama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Sarkissyan, M., Mcghee, E. et al. Combined inhibition of glycolysis and AMPK induces synergistic breast cancer cell killing. Breast Cancer Res Treat 151, 529–539 (2015). https://doi.org/10.1007/s10549-015-3386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3386-3

Keywords

Navigation