Skip to main content

Advertisement

Log in

First trimester human placental factors induce breast cancer cell autophagy

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Placental factors, progesterone included, facilitate breast cancer cell line (BCCL) motility and thus may contribute to the advanced breast cancer found during pregnancy. Cancer and placental implantations are similar; the last is accompanied by extravillous trophoblast cell invasion and autophagy which are interlinked. We aimed to analyze the effect of first trimester human placenta on BCCL autophagy. BCCLs (MCF-7/T47D) were cultured with placental explants (60 h) or placental supernatants (24 h). Following cultures, BCCLs were sorted out for RNA/protein extraction. RNA served for microarray/qPCR (BNIP3) and protein for Western blot (HIF1α, LC3BII) analyses. Inhibitors were added to the placenta-MCF-7 coculture or placental supernatants (autophagy inhibitor-3MA, progesterone receptor (PR) inhibitor-RU486, and HIF1α inhibitor-Vitexin) in order to evaluate their effects on BCCL motility and LC3BII/HIF1α expression. LC3BII (an autophagy marker) expression was elevated in BCCLs following placental explant coculture and exposure to placental supernatants. The autophagy inhibitor (3MA) repressed the placenta-induced MCF-7/T47D migration, establishing a connection between BCCL autophagy and migration. Microarray analysis of MCF-7 following placenta-MCF-7 coculture showed that “HIF1α pathway,” a known autophagy facilitator, was significantly manipulated. Indeed, placental factors elevated HIF1α and its target BNIP3 in the BCCLs, verifying array results. Lastly, PR inhibitor reduced HIF1α expression and both PR and HIF1α inhibitors reduced MCF-7 LC3BII expression and motility, suggesting involvement of the PR-HIF1α axis in the autophagy process. Placental factors induced BCCL autophagy that is interlinked to their motility. This suggests that autophagy-related molecules may serve as targets for therapy in pregnancy-associated breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith LH, Danielsen B, Allen ME, Cress R (2003) Cancer associated with obstetric delivery: results of linkage with the California cancer registry. Am J Obstet Gynecol 189(4):1128–1135

    Article  PubMed  Google Scholar 

  2. Zemlickis D, Lishner M, Degendorfer P, Panzarella T, Burke B, Sutcliffe SB et al (1992) Maternal and fetal outcome after breast cancer in pregnancy. Am J Obstet Gynecol 166(3):781–787. doi:10.1016/0002-9378(92)91334-7

    Article  CAS  PubMed  Google Scholar 

  3. Stensheim H, Moller B, van Dijk T, Fossa SD (2009) Cause-specific survival for women diagnosed with cancer during pregnancy or lactation: a registry-based cohort study. J Clin Oncol 27(1):45–51. doi:10.1200/JCO.2008.17.4110

    Article  PubMed  Google Scholar 

  4. Jackisch C, Louwen F, Schwenkhagen A, Karbowski B, Schmid KW, Schneider HP et al (2003) Lung cancer during pregnancy involving the products of conception and a review of the literature. Arch Gynecol Obstet 268(2):69–77

    PubMed  Google Scholar 

  5. Holtan SG, Creedon DJ, Haluska P, Markovic SN (2009) Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin Proc 84(11):985–1000. doi:10.4065/84.11.985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Tartakover-Matalon S, Mizrahi A, Epstein G, Shneifi A, Drucker L, Pomeranz M et al (2010) Breast cancer characteristics are modified by first trimester human placenta: in vitro co-culture study. Hum Reprod 25(10):2441–2454. doi:10.1093/humrep/deq227

    Article  CAS  PubMed  Google Scholar 

  7. Epstein Shochet G, Tartakover-Matalon S, Drucker L, Pasmanik-Chor M, Pomeranz M, Fishman A et al (2014) Placenta-breast cancer cell interactions promote cancer cell epithelial mesenchymal transition via TGFbeta/JNK pathway. Clin Exp Metastasis. doi:10.1007/s10585-014-9683-0

    PubMed  Google Scholar 

  8. Epstein Shochet G, Tartakover Matalon S, Drucker L, Pomeranz M, Fishman A, Rashid G et al (2012) Hormone-dependent placental manipulation of breast cancer cell migration. Hum Reprod 27(1):73–88. doi:10.1093/humrep/der365

    Article  CAS  PubMed  Google Scholar 

  9. Saito S, Nakashima A (2013) Review: the role of autophagy in extravillous trophoblast function under hypoxia. Placenta 34(Suppl):S79–S84. doi:10.1016/j.placenta.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  10. Kubisch J, Turei D, Foldvari-Nagy L, Dunai ZA, Zsakai L, Varga M et al (2013) Complex regulation of autophagy in cancer—integrated approaches to discover the networks that hold a double-edged sword. Semin Cancer Biol 23(4):252–261. doi:10.1016/j.semcancer.2013.06.009

    Article  PubMed  Google Scholar 

  11. Kenific CM, Thorburn A, Debnath J (2010) Autophagy and metastasis: another double-edged sword. Curr Opin Cell Biol 22(2):241–245. doi:10.1016/j.ceb.2009.10.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Li J, Yang B, Zhou Q, Wu Y, Shang D, Guo Y et al (2013) Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial-mesenchymal transition. Carcinogenesis 34(6):1343–1351. doi:10.1093/carcin/bgt063

    Article  CAS  PubMed  Google Scholar 

  13. Indelicato M, Pucci B, Schito L, Reali V, Aventaggiato M, Mazzarino MC et al (2010) Role of hypoxia and autophagy in MDA-MB-231 invasiveness. J Cell Physiol 223(2):359–368. doi:10.1002/jcp.22041

    CAS  PubMed  Google Scholar 

  14. Delorme-Axford E, Bayer A, Sadovsky Y, Coyne CB (2013) Autophagy as a mechanism of antiviral defense at the maternal-fetal interface. Autophagy 9(12):2173–2174. doi:10.4161/auto.26558

    Article  CAS  PubMed  Google Scholar 

  15. Genbacev O, Schubach SA, Miller RK (1992) Villous culture of first trimester human placenta-model to study extravillous trophoblast (EVT) differentiation. Placenta 13(5):439–461

    Article  CAS  PubMed  Google Scholar 

  16. Genbacev O, Miller RK (1993) Three-dimensional culture of placental villuos tissue explants: an in vitro model for peri-implantation. Methods Toxicol 3B:246–260

    Google Scholar 

  17. Genbacev O, Jensen KD, Powlin SS, Miller RK (1993) In vitro differentiation and ultrastructure of human extravillous trophoblast (EVT) cells. Placenta 14(4):463–475

    Article  CAS  PubMed  Google Scholar 

  18. Choi HJ, Eun JS, Kim BG, Kim SY, Jeon H, Soh Y (2006) Vitexin, an HIF-1alpha inhibitor, has anti-metastatic potential in PC12 cells. Mol Cells 22(3):291–299

    CAS  PubMed  Google Scholar 

  19. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  20. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. doi:10.1007/978-1-59745-157-4_4

    Article  CAS  PubMed  Google Scholar 

  21. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK et al (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119(11):3329–3339. doi:10.1172/JCI39228

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. doi:10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  24. Jonchere B, Belanger A, Guette C, Barre B, Coqueret O (2013) STAT3 as a new autophagy regulator. JAKSTAT 2(3):e24353. doi:10.4161/jkst.24353

    PubMed Central  PubMed  Google Scholar 

  25. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi:10.1128/MCB.00166-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Goda N, Kanai M (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 95(5):457–463. doi:10.1007/s12185-012-1069-y

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB et al (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903. doi:10.1074/jbc.M800102200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schmeisser H, Bekisz J, Zoon KC (2014) New function of type I IFN: induction of autophagy. J Interferon Cytokine Res 34(2):71–78. doi:10.1089/jir.2013.0128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jokhi PP, King A, Loke YW (1997) Cytokine production and cytokine receptor expression by cells of the human first trimester placental-uterine interface. Cytokine 9(2):126–137. doi:10.1006/cyto.1996.0146

    Article  CAS  PubMed  Google Scholar 

  30. Kim J, Kim TY, Cho KS, Kim HN, Koh JY (2013) Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 59:80–85. doi:10.1016/j.nbd.2013.07.011

    Article  CAS  PubMed  Google Scholar 

  31. Sobolewska A, Gajewska M, Zarzynska J, Gajkowska B, Motyl T (2009) IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur J Cell Biol 88(2):117–130. doi:10.1016/j.ejcb.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  32. Daikoku T, Matsumoto H, Gupta RA, Das SK, Gassmann M, DuBois RN et al (2003) Expression of hypoxia-inducible factors in the peri-implantation mouse uterus is regulated in a cell-specific and ovarian steroid hormone-dependent manner. Evidence for differential function of HIFs during early pregnancy. J Biol Chem 278(9):7683–7691. doi:10.1074/jbc.M211390200

    Article  CAS  PubMed  Google Scholar 

  33. Amaravadi RK (2012) Autophagy and tumor cell invasion. Cell Cycle 11(20):3718–3719. doi:10.4161/cc.22147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Macintosh RL, Timpson P, Thorburn J, Anderson KI, Thorburn A, Ryan KM (2012) Inhibition of autophagy impairs tumor cell invasion in an organotypic model. Cell Cycle 11(10):2022–2029. doi:10.4161/cc.20424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zielniok K, Motyl T, Gajewska M (2014) Functional interactions between 17 beta -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int 2014:382653. doi:10.1155/2014/382653

    Article  PubMed Central  PubMed  Google Scholar 

  36. Maes H, Van Eygen S, Krysko DV, Vandenabeele P, Nys K, Rillaerts K et al (2014) BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton. Cell Death Dis 5:e1127. doi:10.1038/cddis.2014.94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Mimeault M, Batra SK (2013) Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 17(1):30–54. doi:10.1111/jcmm.12004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol 9(11):1623–1636. doi:10.2217/fon.13.92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work constitutes a section of the PhD thesis of Epstein Shochet Gali, Sackler Faculty of Medicine, Tel Aviv University, Israel.

Conflict of interest

The authors declare no conflict of interest.

Funding

This work was supported by the ‘Dr Leo Mintz Foundation’ of the Sackler Faculty of Medicine, Tel Aviv University, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tartakover Matalon.

Additional information

S. Tartakover Matalon and M. Lishner have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epstein Shochet, G., Drucker, L., Pasmanik-Chor, M. et al. First trimester human placental factors induce breast cancer cell autophagy. Breast Cancer Res Treat 149, 645–654 (2015). https://doi.org/10.1007/s10549-015-3266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3266-x

Keywords

Navigation