Skip to main content

Advertisement

Log in

Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The aim of this study is to use functional magnetic resonance imaging (fMRI) to prospectively examine pre-treatment predictors of post-treatment fatigue and cognitive dysfunction in women treated with adjuvant chemotherapy for breast cancer. Fatigue and cognitive dysfunction often co-occur in women treated for breast cancer. We hypothesized that pre-treatment factors, unrelated to chemotherapy per se, might increase vulnerability to post-treatment fatigue and cognitive dysfunction. Patients treated with (n = 28) or without chemotherapy (n = 37) and healthy controls (n = 32) were scanned coincident with pre- and one-month post-chemotherapy during a verbal working memory task (VWMT) and assessed for fatigue, worry, and cognitive dysfunction. fMRI activity measures in the frontoparietal executive network were used in multiple linear regression to predict post-treatment fatigue and cognitive function. The chemotherapy group reported greater pre-treatment fatigue than controls and showed compromised neural response, characterized by higher spatial variance in executive network activity, than the non-chemotherapy group. Also, the chemotherapy group reported greater post-treatment fatigue than the other groups. Linear regression indicated that pre-treatment spatial variance in executive network activation predicted post-treatment fatigue severity and cognitive complaints, while treatment group, age, hemoglobin, worry, and mean executive network activity levels did not predict these outcomes. Pre-treatment neural inefficiency (indexed by high spatial variance) in the executive network, which supports attention and working memory, was a better predictor of post-treatment cognitive and fatigue complaints than exposure to chemotherapy per se. This executive network compromise could be a pre-treatment neuromarker of risk, indicating patients most likely to benefit from early intervention for fatigue and cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ADHD:

Attention deficit hyperactivity disorder

AFI:

Attentional function index

ANOVA:

Analysis of variance

DCIS:

Ductal carcinoma in situ

EN:

Executive network

FACIT-F:

Functional assessment of chronic illness therapy-fatigue

fMRI:

Functional magnetic resonance imaging

g/dl:

Grams/deciliter

Hb:

Hemoglobin

MMSE:

Mini-mental state exam

ms:

Milliseconds

PHQ:

Patient health questionnaire

TIWI:

Three-item worry index

VWMT:

Verbal working memory task

References

  1. Wefel JS, Schagen SB (2012) Chemotherapy-related cognitive dysfunction. Curr Neurol Neurosci Rep 12:267–275. doi:10.1007/s11910-012-0264-9

    Article  CAS  PubMed  Google Scholar 

  2. Wefel JS, Vardy J, Ahles T, Schagen SB (2011) International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol 12:703–708. doi:10.1016/S1470-2045(10)70294-1

    Article  PubMed  Google Scholar 

  3. Ruzich M, Ryan B, Owen C et al (2007) Prospective evaluation of cognitive function in patients with early breast cancer receiving adjuvant chemotherapy. Asia Pac J Clin Oncol 3:125–133

    Article  Google Scholar 

  4. Tager FA, McKinley PS, Schnabel FR et al (2010) The cognitive effects of chemotherapy in post-menopausal breast cancer patients: a controlled longitudinal study. Breast Cancer Res Treat 123:25–34. doi:10.1007/s10549-009-0606-8

    Article  PubMed  Google Scholar 

  5. Hedayati E, Alinaghizadeh H, Schedin A et al (2012) Effects of adjuvant treatment on cognitive function in women with early breast cancer. Eur J Oncol Nurs 16:315–322. doi:10.1016/j.ejon.2011.07.006

    Article  PubMed  Google Scholar 

  6. Wefel JS, Lenzi R, Theriault RL et al (2004) The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer 100:2292–2299. doi:10.1002/cncr.20272

    Article  CAS  PubMed  Google Scholar 

  7. Hermelink K, Untch M, Lux MP et al (2007) Cognitive function during neoadjuvant chemotherapy for breast cancer: results of a prospective, multicenter, longitudinal study. Cancer 109:1905–1913. doi:10.1002/cncr.22610

    Article  CAS  PubMed  Google Scholar 

  8. Reuter-Lorenz P, Cimprich B (2013) Cognitive function and breast cancer: promise and potential insights from functional brain imaging. Breast Cancer Res Treat 137:33–43. doi:10.1007/s10549-012-2266-3

    Article  CAS  PubMed  Google Scholar 

  9. Wefel JS, Saleeba AK, Buzdar AU, Meyers CA (2010) Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 116:3348–3356. doi:10.1002/cncr.25098

    Article  PubMed  Google Scholar 

  10. Jim HS, Phillips KM, Chait S et al (2012) Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol 30:3578–3587. doi:10.1200/JCO.2011.39.5640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cimprich B, Reuter-Lorenz P, Nelson J et al (2010) Prechemotherapy alterations in brain function in women with breast cancer. J Clin Exp Neuropsychol 32:324–331. doi:10.1080/13803390903032537

    Article  PubMed  Google Scholar 

  12. Ahles TA, Saykin AJ, McDonald BC et al (2008) Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat 110:143–152. doi:10.1007/s10549-007-9686-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Scherling C, Collins B, Mackenzie J et al (2011) Pre-chemotherapy differences in visuospatial working memory in breast cancer patients compared to controls: an FMRI study. Front Hum Neurosci 5:122. doi:10.3389/fnhum.2011.00122

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bower JE, Lamkin DM (2013) Inflammation and cancer-related fatigue: mechanisms, contributing factors, and treatment implications. Brain Behav Immun 30(Suppl):S48–S57. doi:10.1016/j.bbi.2012.06.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ganz PA, Bower JE, Kwan L et al (2013) Does tumor necrosis factor-alpha (TNF-alpha) play a role in post-chemotherapy cerebral dysfunction? Brain Behav Immun 30(Suppl):S99–S108. doi:10.1016/j.bbi.2012.07.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kaplan S, Berman MG (2010) Directed attention as a common resource for executive functioning and self-regulation. Psychol Sci 5:43–57

    Google Scholar 

  17. Berger AM, Gerber LH, Mayer DK (2012) Cancer-related fatigue: implications for breast cancer survivors. Cancer 118:2261–2269. doi:10.1002/cncr.27475

    Article  PubMed  Google Scholar 

  18. De Jong N, Candel MJ, Schouten HC et al (2004) Prevalence and course of fatigue in breast cancer patients receiving adjuvant chemotherapy. Ann Oncol 15:896–905

    Article  PubMed  Google Scholar 

  19. Noal S, Levy C, Hardouin A et al (2011) One-year longitudinal study of fatigue, cognitive functions, and quality of life after adjuvant radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 81:795–803. doi:10.1016/j.ijrobp.2010.06.037

    Article  PubMed  Google Scholar 

  20. Minton O, Stone PC (2013) A comparison of cognitive function, sleep and activity levels in disease-free breast cancer patients with or without cancer-related fatigue syndrome. BMJ Support Palliat Care 2:231–238. doi:10.1136/bmjspcare-2011-000172

    Article  PubMed Central  Google Scholar 

  21. Mehnert A, Scherwath A, Schirmer L et al (2007) The association between neuropsychological impairment, self-perceived cognitive deficits, fatigue and health related quality of life in breast cancer survivors following standard adjuvant versus high-dose chemotherapy. Patient Educ Counseling 66:108–118. doi:10.1016/j.pec.2006.11.005

    Article  Google Scholar 

  22. Ferguson RJ, McDonald BC, Saykin AJ, Ahles TA (2007) Brain structure and function differences in monozygotic twins: possible effects of breast cancer chemotherapy. J Clin Oncol 25:3866–3870. doi:10.1200/JCO.2007.10.8639

    Article  PubMed Central  PubMed  Google Scholar 

  23. De Ruiter MB, Reneman L, Boogerd W et al (2011) Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp 32:1206–1219. doi:10.1002/hbm.21102

    Article  PubMed  Google Scholar 

  24. Kesler SR, Kent JS, O’Hara R (2011) Prefrontal cortex and executive function impairments in primary breast cancer. Arch Neurol 68:1447–1453. doi:10.1001/archneurol.2011.245

    Article  PubMed Central  PubMed  Google Scholar 

  25. McDonald BC, Conroy SK, Ahles TA et al (2012) Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J Clin Oncol. doi:10.1200/JCO.2011.38.5674

    Google Scholar 

  26. Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci 3:142–151. doi:10.1038/nrn730

    Article  CAS  PubMed  Google Scholar 

  27. Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22:1517–1531. doi:10.1016/j.mri.2004.10.018

    Article  PubMed  Google Scholar 

  28. Reuter-Lorenz PA, Cappell KA (2008) Neurocognitive aging and the compensation hypothesis. Curr Dir Psychol Sci 17:177–182. doi:10.1111/j.1467-8721.2008.00570.x

    Article  Google Scholar 

  29. Berman MG, Nee DE, Casement M et al (2011) Neural and behavioral effects of interference resolution in depression and rumination. Cogn Affect Behav Neurosci 11:85–96. doi:10.3758/s13415-010-0014-x

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kroenke K, Strine TW, Spitzer RL et al (2009) The PHQ-8 as a measure of current depression in the general population. J Affect Disord 114:163–173. doi:10.1016/j.jad.2008.06.026

    Article  PubMed  Google Scholar 

  31. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  32. Berman MG, Askren MK, Sook Jung M et al (2013) Pretreatment worry and neurocognitive responses in women with breast cancer. Health Psychol. doi:10.1037/a0033425

    PubMed  Google Scholar 

  33. Yellen SB, Cella DF, Webster K et al (1997) Measuring fatigue and other anemia-related symptoms with the functional assessment of cancer therapy (FACT) measurement system. J Pain Symptom Manage 13:63–74. doi:10.1016/S0885-3924(96)00274-6

    Article  CAS  PubMed  Google Scholar 

  34. Cimprich B, Visovatti M, Ronis DL (2011) The attentional function index—a self-report cognitive measure. Psychooncology 20:194–202. doi:10.1002/pon.1729

    Article  PubMed  Google Scholar 

  35. Kelly WE (2004) A brief measure of general worry: the three item worry index. North Am J Psychol 6:219–225

    Google Scholar 

  36. Nelson JK, Reuter-Lorenz PA, Sylvester C-YC et al (2003) Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proc Natl Acad Sci 100:11171–11175. doi:10.1073/pnas.1334125100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Belle S, Paridaens R, Evers G et al (2005) Comparison of proposed diagnostic criteria with FACT-F and VAS for cancer-related fatigue: proposal for use as a screening tool. Support Care Cancer 13:246–254. doi:10.1007/s00520-004-0734-y

    Article  PubMed  Google Scholar 

  38. Depue BE, Burgess GC, Willcutt EG et al (2010) Symptom-correlated brain regions in young adults with combined-type ADHD: their organization, variability, and relation to behavioral performance. Psychiatry Res Neuroimaging 182:96–102. doi:10.1016/j.pscychresns.2009.11.011

    Article  Google Scholar 

  39. Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2013) The modulation of BOLD variability between cognitive states varies by age and processing speed. Cereb Cortex 23:684–693

    Article  PubMed  Google Scholar 

  40. Berman MG, Yourganov G, Askren MK et al (2013) Dimensionality of brain networks linked to life-long individual differences in self-control. Nat Commun 4:1373. doi:10.1038/ncomms2374

    Article  PubMed Central  PubMed  Google Scholar 

  41. Deprez S, Vandenbulcke M, Peeters R et al (2014) Longitudinal assessment of chemotherapy-induced alterations in brain activation during multitasking and its relation with cognitive complaints. J Clin Oncol 32:2031–2038. doi:10.1200/JCO.2013.53.6219

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health R01 NR01039 (BC), and the Fashion Footwear Charitable Foundation of New York/QVC Presents Shoes on Sale™ (DFH).

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Askren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askren, M.K., Jung, M., Berman, M.G. et al. Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation. Breast Cancer Res Treat 147, 445–455 (2014). https://doi.org/10.1007/s10549-014-3092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3092-6

Keywords

Navigation