Skip to main content

Advertisement

Log in

Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that dysfunction of histone lysine demethylase is associated with abnormal chromatin remodeling and gene silencing, contributing to breast tumorigenesis. In silico analysis shows that the newly identified histone demethylase lysine-specific demethylase 2 is highly expressed in breast cancer, especially in invasive tumors. However, it is currently unknown how LSD2 regulates chromatin remodeling and gene expression regulation in breast cancer. Using short hairpin RNA, we stably knocked down LSD2 (LSD2-KD) in MDA-MB-231 breast cancer cells. LSD2-KD led to accumulation of H3K4me1/2 without changing methylation levels of other key histone lysine residues, suggesting that LSD2 acts as a bona fide H3K4 demethylase in breast cancer cells. LSD2-KD resulted in decreased colony formation and attenuated global DNA methylation in MDA-MB-231 cells. Additionally, treatment with the DNMT inhibitor, 5-aza-deoxycytidine (DAC), synergistically increased mRNA expression of aberrantly silenced genes important in breast cancer development, including PR, RARβ, ERα, SFRP1, SFRP2, and E-cadherin in LSD2-KD cells. Furthermore, LSD2-KD cells are more susceptible to cell death than scramble controls, and combined treatment with tranylcypromine, an LSD2 inhibitor, and DAC resulted in synergistic growth inhibition of breast cancer cells. DNMT inhibition by DAC in LSD2-KD cells led to internucleosomal DNA fragmentation, enhanced PARP cleavage and increased sub-G1 apoptotic cell population. These results demonstrate an important role for LSD2 in regulation of DNA methylation and gene silencing in breast cancer, and suggest that inhibition of LSD2 in combination with DNA methyltransferase inhibition represents a novel approach for epigenetic therapy of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LSD:

Lysine-specific demethylase

KD:

Knockdown

HDAC:

Histone deacetylase

DAC:

Decitabine

TCP:

Tranylcypromine

DNMT:

DNA methyltransferase

PGR (PR):

Progesterone receptor

ESR1 (ER):

Estrogen receptor

SFRP:

Secreted frizzled related protein

RAR:

Retinoic acid receptor

CDH1:

E-cadherin

References

  1. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    Article  CAS  PubMed  Google Scholar 

  2. Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435

    CAS  PubMed  Google Scholar 

  3. Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A (2009) A novel mammalian flavin-dependent histone demethylase. J Biol Chem 284(26):17775–17782. doi:10.1074/jbc.M109.003087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S (2011) Epigenetics in breast cancer: what’s new? Breast Cancer Res 13(6):225. doi:10.1186/bcr2925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, Lan F, Mei P, Yuan GC, Lian C, Peng J, Cheng D, Sui G, Kaiser UB, Shi Y, Shi YG (2010) Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell 39(2):222–233. doi:10.1016/j.molcel.2010.07.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Yang Z, Jiang J, Stewart DM, Qi S, Yamane K, Li J, Zhang Y, Wong J (2010) AOF1 is a histone H3K4 demethylase possessing demethylase activity-independent repression function. Cell Res 20(3):276–287. doi:10.1038/cr.2010.12

    Article  CAS  PubMed  Google Scholar 

  7. Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262):415–418. doi:10.1038/nature08315

    Article  CAS  PubMed  Google Scholar 

  8. Mersin H, Yildirim E, Berberoglu U, Gulben K (2008) The prognostic importance of triple negative breast carcinoma. Breast 17(4):341–346. doi:10.1016/j.breast.2007.11.031

    Article  PubMed  Google Scholar 

  9. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, Melisko M, Ismail-Khan R, Rugo H, Moasser M, Minton SE (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer 104(12):1828–1835. doi:10.1038/bjc.2011.156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pathiraja TN, Stearns V, Oesterreich S (2010) Epigenetic regulation in estrogen receptor positive breast cancer—role in treatment response. J Mammary Gland Biol Neoplasia 15(1):35–47. doi:10.1007/s10911-010-9166-0

    Article  PubMed Central  PubMed  Google Scholar 

  11. Stearns V, Zhou Q, Davidson NE (2007) Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest 25(8):659–665. doi:10.1080/07357900701719234

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Vasilatos SN, Boric L, Shaw PG, Davidson NE (2012) Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells. Breast Cancer Res Treat 131(3):777–789. doi:10.1007/s10549-011-1480-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R, Kirfel J (2009) Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive tumor biology. Carcinogenesis 31(3):512–520. doi:10.1093/carcin/bgp324

    Article  PubMed  Google Scholar 

  14. Zhu Q, Huang Y, Marton LJ, Woster PM, Davidson NE, Casero RA Jr (2012) Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells. Amino Acids 42(2–3):887–898. doi:10.1007/s00726-011-1004-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Vasilatos SN, Katz TA, Oesterreich S, Wan Y, Davidson NE, Huang Y (2013) Crosstalk between lysine specific demethylase 1 (LSD1) and histone demethylases mediates antineoplastic efficacy of HDAC inhibitors in breast cancer cells. Carcinogenesis 34 (6):1196–1207. doi:10.1093/carcin/bgt033

  16. Huang Y, Hager ER, Phillips DL, Dunn VR, Hacker A, Frydman B, Kink JA, Valasinas AL, Reddy VK, Marton LJ, Casero RA Jr, Davidson NE (2003) A novel polyamine analog inhibits growth and induces apoptosis in human breast cancer cells. Clin Cancer Res 9(7):2769–2777

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  18. van Essen D, Zhu Y, Saccani S (2010) A feed-forward circuit controlling inducible NF-kappaB target gene activation by promoter histone demethylation. Mol Cell 39(5):750–760. doi:10.1016/j.molcel.2010.08.010

    Article  PubMed  Google Scholar 

  19. Seward DJ, Cubberley G, Kim S, Schonewald M, Zhang L, Tripet B, Bentley DL (2007) Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins. Nat Struct Mol Biol 14(3):240–242. doi:10.1038/nsmb1200

    Article  CAS  PubMed  Google Scholar 

  20. Katoh Y, Katoh M (2007) Comparative integromics on JMJD2A, JMJD2B and JMJD2C: preferential expression of JMJD2C in undifferentiated ES cells. Int J Mol Med 20(2):269–273

    CAS  PubMed  Google Scholar 

  21. Fodor BD, Kubicek S, Yonezawa M, O’Sullivan RJ, Sengupta R, Perez-Burgos L, Opravil S, Mechtler K, Schotta G, Jenuwein T (2006) Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20(12):1557–1562. doi:10.1101/gad.388206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2):107–116. doi:10.1038/nrc1799

    Article  CAS  PubMed  Google Scholar 

  23. McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, Van Criekinge W, Schuebel KE, Baylin SB (2008) Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res 68(14):5753–5759. doi:10.1158/0008-5472.CAN-08-0700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lapidus RG, Ferguson AT, Ottaviano YL, Parl FF, Smith HS, Weitzman SA, Baylin SB, Issa JP, Davidson NE (1996) Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res 2(5):805–810

    CAS  PubMed  Google Scholar 

  25. Pathiraja TN, Shetty PB, Jelinek J, He R, Hartmaier R, Margossian AL, Hilsenbeck SG, Issa JP, Oesterreich S (2011) Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res 17(12):4177–4186. doi:10.1158/1078-0432.CCR-10-2950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717. doi:10.1038/nature05987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Holmes A, Roseaulin L, Schurra C, Waxin H, Lambert S, Zaratiegui M, Martienssen RA, Arcangioli B (2012) LSD1 and LSD2 control programmed replication fork pauses and imprinting in fission yeast. Cell Rep 2(6):1513–1520. doi:10.1016/j.celrep.2012.10.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, Gaudet F, Li E, Chen T (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41(1):125–129. doi:10.1038/ng.268

    Article  CAS  PubMed  Google Scholar 

  29. McGarvey KM, Fahrner JA, Greene E, Martens J, Jenuwein T, Baylin SB (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66(7):3541–3549. doi:10.1158/0008-5472.CAN-05-2481

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Partially supported by Breast Cancer Research Foundation, Samuel Winters Foundation, and Competitive Medical Research Fund of UPMC. These studies used the UPCI Genomics Core Facility supported by P30CA047904.

Conflicts of interest

The authors declare no competing interests.

Ethical standard

All experiments comply with the current laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nancy E. Davidson or Yi Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

LSD2 gene expression is increased in breast cancer. Three data sets from the oncomine.org database are presented, as well as LSD2 OncoPrint data in cBioPortal.org. (PPTX 8122 kb)

Supplemental Fig. 2

Increased sensitivity in LSD2-KD cells is specific for DAC. Dose responses for 4-OH-tamoxifen, carboplatin, and lapatinib after 120 h and for paclitaxel, ABT-888, and doxorubicin after 96 h were assessed by crystal violet assay. Each point represents the mean of 3 experiments ± SEM (t test, * = p < 0.05) (PPTX 209 kb)

Supplementary material 3 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katz, T.A., Vasilatos, S.N., Harrington, E. et al. Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res Treat 146, 99–108 (2014). https://doi.org/10.1007/s10549-014-3012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3012-9

Keywords

Navigation