Skip to main content

Advertisement

Log in

Phosphorylated VEGFR2 and hypertension: potential biomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The efficacy of anti-VEGF agents probably lies on VEGF-dependency. Apatinib, a specific tyrosine kinase inhibitor that targets VEGF receptor 2, was assessed in patients with advanced breast cancer (ABC) (ClinicalTrials.gov NCT01176669 and NCT01653561). This substudy was to explore the potential biomarkers for VEGF-dependency in apatinib-treated breast cancer. Eighty pretreated patients received apatinib 750 or 500 mg/day orally in 4-week cycles. Circulating biomarkers were measured using a multiplex assay, and tissue biomarkers were identified with immunostaining. Baseline characteristics and adverse events (AEs) were included in the analysis. Statistical confirmation of independent predictive factors for anti-tumor efficacy was performed using Cox and Logistic regression models. Median progression-free survival (PFS) was 3.8 months, and overall survival (OS) was 10.6 months, with 17.5 % of objective response rate. Prominent AEs (≥60 %) were hypertension, hand-foot skin reaction (HFSR), and proteinuria. Higher tumor phosphorylated VEGFR2 (p-VEGFR2) expressions (P = 0.001), higher baseline serum soluble VEGFR2 (P = 0.031), hypertension (P = 0.011), and HFSR (P = 0.018) were significantly related to longer PFS, whereas hypertension (P = 0.002) and HFSR (P = 0.001) were also related to OS. Based on multivariate analysis, only p-VEGFR2 (adjusted HR, 0.40; P = 0.013) and hypertension (adjusted HR, 0.58; P = 0.038) were independent predictive factors for both PFS and clinical benefit rate. Apatinib had substantial antitumor activity in ABC and manageable toxicity. p-VEGFR2 and hypertension may be surrogate predictors of VEGF-dependency of breast cancer, which may identify an anti-angiogenesis sensitive population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PFS:

Progression-free survival

OS:

Overall survival

ORR:

Objective response rate

DCR:

Disease control rate

CBR:

Clinical benefit rate

AEs:

Adverse events

HFSR:

Hand–foot skin reaction

VEGFR2:

Vascular endothelia growth factor receptor 2

p-VEGFR2:

Phosphorylated VEGFR2

TKI:

Tyrosine kinase inhibitors

ABC:

Advanced breast cancer

RECIST:

Response evaluation criteria for solid tumors

CTCAE:

Common terminology criteria for AEs

ECOG:

Eastern Cooperative Oncology Group

TNBC:

Triple-negative breast cancer

IHC:

Immunohistochemistry

IOD:

Integrated optical density

AOD:

Average optical density

ROC:

Receiver operator characteristic

ER:

Estrogen receptor

PR:

Progesterone receptor

References

  1. Althuis MD, Dozier JM, Anderson WF, Devesa SS, Brinton LA (2005) Global trends in breast cancer incidence and mortality 1973-1997. Int J Epidemiol 34:405–412

    Article  PubMed  Google Scholar 

  2. Gasparini G (2000) Prognostic value of vascular endothelial growth factor in breast cancer. Oncologist 5(Suppl 1):37–44

    Article  CAS  PubMed  Google Scholar 

  3. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    Article  CAS  PubMed  Google Scholar 

  5. Rosen LS (2005) VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist 10:382–391

    Article  CAS  PubMed  Google Scholar 

  6. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  7. Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28:3239–3247

    Article  CAS  PubMed  Google Scholar 

  8. Robert NJ, Dieras V, Glaspy J et al (2011) RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29:1252–1260

    Article  CAS  PubMed  Google Scholar 

  9. Bergh J, Bondarenko IM, Lichinitser MR et al (2012) First-line treatment of advanced breast cancer with sunitinib in combination with docetaxel versus docetaxel alone: results of a prospective, randomized phase III study. J Clin Oncol 30:921–929

    Article  CAS  PubMed  Google Scholar 

  10. Yardley DA, Dees EC, Myers SD et al (2012) Phase II open-label study of sunitinib in patients with advanced breast cancer. Breast Cancer Res Treat 136:759–767

    Article  CAS  PubMed  Google Scholar 

  11. Burstein HJ, Elias AD, Rugo HS et al (2008) Phase II study of sunitinib malate, an oral multitargeted tyrosine kinase inhibitor, in patients with metastatic breast cancer previously treated with an anthracycline and a taxane. J Clin Oncol 26:1810–1816

    Article  CAS  PubMed  Google Scholar 

  12. Bianchi G, Loibl S, Zamagni C et al (2009) Phase II multicenter, uncontrolled trial of sorafenib in patients with metastatic breast cancer. Anticancer Drugs 20:616–624

    Article  CAS  PubMed  Google Scholar 

  13. Moreno-Aspitia A, Morton RF, Hillman DW et al (2009) Phase II trial of sorafenib in patients with metastatic breast cancer previously exposed to anthracyclines or taxanes: North Central Cancer Treatment Group and Mayo Clinic Trial N0336. J Clin Oncol 27:11–15

    Article  CAS  PubMed  Google Scholar 

  14. Barrios CH, Liu MC, Lee SC et al (2010) Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res Treat 121:121–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Motzer R, Nosov D, Eisen T (2013) Tivozanib versus sorafenib as initial targeted therapy for patients with advanced renal cell carcinoma: Results from a phase III randomized, open-label, multicenter trial. J Clin Oncol. doi:10.1200/JCO.2012.47.4940

    Google Scholar 

  16. Motzer R, Eisen T, Hutson T (2013) Overall survival results from a phase III study of tivozanib hydrochloride versus sorafenib in patients with renal cell carcinoma. J Clin Oncol 31(suppl 6):350

    Google Scholar 

  17. Hutson T, Gallardo J, Lesovoy V (2013) Axitinib versus sorafenib as first-line therapy in patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol 31(suppl 6):LBA348

    Google Scholar 

  18. Poprach A, Pavlik T, Melichar B et al (2012) Skin toxicity and efficacy of sunitinib and sorafenib in metastatic renal cell carcinoma: a national registry-based study. Ann Oncol 23:3137–3143

    Article  CAS  PubMed  Google Scholar 

  19. Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26:4672–4678

    Article  CAS  PubMed  Google Scholar 

  20. Osterlund P, Soveri LM, Isoniemi H, Poussa T, Alanko T, Bono P (2011) Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy. Br J Cancer 104:599–604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gianni L, Romieu GH, Lichinitser M et al (2013) AVEREL: a randomized phase III trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 31:1719–1725

    Article  CAS  PubMed  Google Scholar 

  22. Van Cutsem E, de Haas S, Kang YK et al (2012) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol 30:2119–2127

    Article  PubMed  Google Scholar 

  23. Cohen EE, Davis DW, Karrison TG et al (2009) Erlotinib and bevacizumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck: a phase I/II study. Lancet Oncol 10:247–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wedam SB, Low JA, Yang SX et al (2006) Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J Clin Oncol 24:769–777

    Article  CAS  PubMed  Google Scholar 

  25. Murukesh N, Dive C, Jayson GC (2010) Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer 102:8–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Deprimo SE, Bello CL, Smeraglia J et al (2007) Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med 5:32

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kelly RJ, Rajan A, Force J et al (2011) Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin Cancer Res 17:1190–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhu AX, Sahani DV, Duda DG et al (2009) Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 27:3027–3035

    Article  CAS  PubMed  Google Scholar 

  29. Hanrahan EO, Ryan AJ, Mann H et al (2009) Baseline vascular endothelial growth factor concentration as a potential predictive marker of benefit from vandetanib in non-small cell lung cancer. Clin Cancer Res 15:3600–3609

    Article  CAS  PubMed  Google Scholar 

  30. Jonasch E, Corn P, Pagliaro LC et al (2010) Upfront, randomized, phase 2 trial of sorafenib versus sorafenib and low-dose interferon alfa in patients with advanced renal cell carcinoma: clinical and biomarker analysis. Cancer 116:57–65

    CAS  PubMed  Google Scholar 

  31. Benelli R, Lorusso G, Albini A, Noonan DM (2006) Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr Pharm Des 12:3101–3115

    Article  CAS  PubMed  Google Scholar 

  32. Dimberg A (2010) Chemokines in angiogenesis. Curr Top Microbiol Immunol 341:59–80

    CAS  PubMed  Google Scholar 

  33. Neufeld G, Kessler O (2006) Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer Metastasis Rev 25:373–385

    Article  CAS  PubMed  Google Scholar 

  34. Tian S, Quan H, Xie C et al (2011) YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo. Cancer Sci 102:1374–1380

    Article  CAS  PubMed  Google Scholar 

  35. Zhang L, Shi M, Huang C et al (2012) A phase II, multicenter, placebo-controlled trial of apatinib in patients with advanced nonsquamous non-small cell lung cancer (NSCLC) after two previous treatment regimens. J Clin Oncol 30:7548

    Google Scholar 

  36. Li J, Qin S, Xu J et al (2013) Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebo-controlled, parallel-arm phase II trial. J Clin Oncol 31:3219–3225

    Article  CAS  PubMed  Google Scholar 

  37. Machado DE, Berardo PT, Palmero CY, Nasciutti LE (2010) Higher expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 (Flk-1) and metalloproteinase-9 (MMP-9) in a rat model of peritoneal endometriosis is similar to cancer diseases. J Exp Clin Cancer Res 29:4

    Article  PubMed  Google Scholar 

  38. Wang CJ, Zhou ZG, Holmqvist A et al (2009) Survivin expression quantified by Image Pro-Plus compared with visual assessment. Appl Immunohistochem Mol Morphol 17:530–535

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Zhao X, Chen L et al (2010) Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies. Bmc Cancer 10:529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li J, Qin S, Xu J et al (2011) A randomized, double-blind, multicenter, phase II, three-arm, placebo-control study of apatinib as third-line treatment in patients with metastatic gastric carcinoma. J Clin Oncol 29:4019)

    Google Scholar 

  41. Izzedine H, Rixe O, Billemont B, Baumelou A, Deray G (2007) Angiogenesis inhibitor therapies: focus on kidney toxicity and hypertension. Am J Kidney Dis 50:203–218

    Article  CAS  PubMed  Google Scholar 

  42. Pistol-Tanase C, Raducan E, Dima SO et al (2008) Assessment of soluble angiogenic markers in pancreatic cancer. Biomark Med 2:447–455

    Article  CAS  PubMed  Google Scholar 

  43. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  CAS  PubMed  Google Scholar 

  44. Cameron D, Brown J, Dent R et al (2013) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol. doi:10.1016/S1470-2045(13)70335-8

    Google Scholar 

  45. Hulse RE, Kunkler PE, Fedynyshyn JP, Kraig RP (2004) Optimization of multiplexed bead-based cytokine immunoassays for rat serum and brain tissue. J Neurosci Methods 136:87–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pircher A, Hilbe W, Heidegger I, Drevs J, Tichelli A, Medinger M (2011) Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int J Mol Sci 12:7077–7099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Giatromanolaki A, Koukourakis MI, Sivridis E et al (2012) Vascular density analysis in colorectal cancer patients treated with vatalanib (PTK787/ZK222584) in the randomised CONFIRM trials. Br J Cancer 107:1044–1050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Weigand M, Hantel P, Kreienberg R, Waltenberger J (2005) Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8:197–204

    Article  CAS  PubMed  Google Scholar 

  49. Kranz A, Mattfeldt T, Waltenberger J (1999) Molecular mediators of tumor angiogenesis: enhanced expression and activation of vascular endothelial growth factor receptor KDR in primary breast cancer. Int J Cancer 84:293–298

    Article  CAS  PubMed  Google Scholar 

  50. Liang Y, Brekken RA, Hyder SM (2006) Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr Relat Cancer 13:905–919

    Article  CAS  PubMed  Google Scholar 

  51. George S, Reichardt P, Lechner T, Li S, Cohen DP, Demetri GD (2012) Hypertension as a potential biomarker of efficacy in patients with gastrointestinal stromal tumor treated with sunitinib. Ann Oncol 23:3180–3187

    Article  CAS  PubMed  Google Scholar 

  52. Tang JR, Markham NE, Lin YJ et al (2004) Inhaled nitric oxide attenuates pulmonary hypertension and improves lung growth in infant rats after neonatal treatment with a VEGF receptor inhibitor. Am J Physiol Lung Cell Mol Physiol 287:L344–L351

    Article  CAS  PubMed  Google Scholar 

  53. Maitland ML, Kasza KE, Karrison T et al (2009) Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res 15:6250–6257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the patients, investigators, and participating institutions. We thank the pathologist Hongyu Gu for tissue biomarker analysis advice; Xiaofeng Xu for enzyme-linked immunosorbent assay; Menghong Sun, Ph.D. and Xueke Zhou for sample preservation; Zhiyu Chen, M.D. and Ka Jia for statistical advice; Zhe Zhang, M.D., for quantitative software operation; and Xiaoyu Chen, Chunmei Liao for operational support. We also thank the sponsor, Jiangsu Hengrui Medicine Co., Ltd., for providing apatinib free of charge. The financial support was provided by Science and Technology Commission of Shanghai Municipality (grant number: 114119b1800).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study was performed in accordance with the International Conference on Harmonization Good Clinical Practice guidelines, the Declaration of Helsinki (1996 version), and applicable local regulatory requirements and laws. The study was approved by Fudan University Shanghai Cancer Center Ethic Committee for Clinical Investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xichun Hu.

Additional information

Minhao Fan and Jian Zhang contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

10549_2013_2793_MOESM2_ESM.eps

Supplementary Fig. 1 Kaplan–Meier curves for PFS: baseline serum sVEGFR2 (a), p-VEGFR2 (b), menstruation status (c), lines of prior chemotherapy (d), hypertension (e), and HFSR (f) (EPS 402 kb)

10549_2013_2793_MOESM3_ESM.eps

Supplementary Fig. 2 Kaplan–Meier curves for OS: p-VEGFR2 (a), number of metastatic sites (b), hypertension (c), and HFSR (d) (EPS 382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, M., Zhang, J., Wang, Z. et al. Phosphorylated VEGFR2 and hypertension: potential biomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy. Breast Cancer Res Treat 143, 141–151 (2014). https://doi.org/10.1007/s10549-013-2793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2793-6

Keywords

Navigation